The Brain – Anatomy, Types, Functions

The Brain – Anatomy, Types, Functions

The brain is an organ of nervous tissue that is responsible for responses, sensation, movement, emotions, communication, thought processing, and memory. Protection for the human brain comes from the skull, meninges, and cerebrospinal fluids. The nervous tissue is extremely delicate and can suffer damage by the smallest amount of force. In addition, it has a blood-brain barrier preventing the brain from any harmful substance that could be floating in the blood.

The spinal cord is a vital aspect of the CNS found within the vertebral column. The purpose of the spinal cord is to send motor commands from the brain to the peripheral body as well as to relay sensory information from the sensory organs to the brain. Spinal cord protection is by bone, meninges, and cerebrospinal fluids.

Structure and Function

The parts of the human brain are

  • The cerebrum – It divides into the left and right cerebral hemispheres. The cerebral hemispheres have folds and convolutions on their surface. The ridges found between the convolutions are called gyri. The valleys between the gyri are called sulci (plural of sulcus). If the sulci are deep, they are called fissures. Both cerebral hemispheres have an outer layer of grey matter called the cerebral cortex.
  • Cerebellum – It is comprised of the cerebellar cortex and deep cerebellar nuclei. The cerebellar cortex is made up of 3 layers, the molecular, Purkinje, and granular layers. The cerebellum is connected to the brainstem by structures known as the cerebellar peduncles. The cerebellum’s primary function is to modulate motor coordination, posture, and balance.
  • The brainstem – It contains the midbrain, pons, and medulla. It is located between the base of the cerebrum and the spinal cord.

The brain is broken up into two hemispheres, the left, and the right. While they are in constant communication, the left and right hemisphere are responsible for different behaviors, known as brain lateralization. The left hemisphere is more dominant with language, logic, and math abilities. The right hemisphere is more creative, being dominant in artistic and musical situations, and intuition.

  • Cerebral cortex – The cerebral cortex is the outermost layer that surrounds the brain. It is composed of gray matter and filled with billions of neurons used to conduct high-level executive functions. The cortex divides into four lobes; frontal, parietal, occipital, and temporal by different sulci. The frontal lobe, located anteriorly to the central sulcus, is responsible for voluntary motor function, problem-solving, attention, memory, and language. Located in the frontal lobe are the motor cortex and the Broca area. The motor cortex allows for the precise voluntary movements of our skeletal muscles, while the Broca area controls motor functions responsible for producing language. The parietal lobe is separated from the occipital lobe by the parieto-occipital sulcus and is behind the central sulcus. It is responsible for processing sensory information and contains the somatosensory cortex. Neurons in the parietal lobe receive information from sensory and proprioceptors throughout the body, process the can, and form an understanding about what is being touched based on previous knowledge. The occipital lobe, known as the visual processing center, contains the visual cortex. Similar to the parietal lobe, the occipital lobe receives information from the retina and then uses past visual experiences to interpret and recognize the stimuli. Lastly, the temporal lobe processes auditory stimuli through the auditory cortex. Mechanoreceptors located in the hair cells lining the cochlea are activated by sound energy, which in turn sends impulses to the auditory cortex. The impulse is processed and stored based on previous experiences. The Wernicke area is in the temporal lobe and functions in speech comprehension.
  • Basal nuclei – The basal nuclei, also known as basal ganglia, is located deep within the cerebral white matter and is composed of the caudate nucleus, putamen, and globus pallidus. These structures form the pallidum and striatum. The basal ganglia are responsible for muscle movements and coordination.
  • Thalamus – The thalamus is the relay center of the brain. It receives afferent impulses from sensory receptors located throughout the body and processes the information for distribution to the appropriate cortical area. It is also responsible for regulating consciousness and sleep.
  • Hypothalamus – While the hypothalamus is one of the smallest parts of the brain, it is vital to maintaining homeostasis. The hypothalamus connects the central nervous system to the endocrine system. It is responsible for heart rate, blood pressure, appetite, thirst, temperature, and the release of various hormones. The hypothalamus also communicates with the pituitary gland to release or inhibit antidiuretic hormone, corticotropin-releasing hormone, gonadotropin-releasing hormone, growth hormone-releasing hormone, prolactin inhibiting hormone, thyroid releasing hormone, and oxytocin.
  • Pons – Found in the brainstem, the pons connects the medulla oblongata and the thalamus. It is composed of tracts responsible for relaying impulses from the motor cortex to the cerebellum, medulla, and thalamus.
  • Medulla oblongata – The medulla oblongata is at the bottom of the brain stem, where the spinal cord meets the foramen magnum of the skull. It is responsible for autonomic functions, some of which are crucial for survival. The medulla oblongata monitors the body’s respiratory system using chemoreceptors. These receptors are able to detect changes in blood chemistry. For example, if the blood is too acidic, the medulla oblongata will increase the respiratory rate allowing for more oxygen to reach the blood. It is also a cardiovascular and vasomotor center. The medulla oblongata can regulate the body’s blood pressure, pulse, and cardiac contractions based on the body’s needs. Lastly, it controls reflexes like vomiting, swallowing, coughing, and sneezing.
  • Cerebellum – The cerebellum, also known as the little brain, is responsible for smooth, coordinated voluntary movements. It subdivides into three lobes: the anterior, posterior, and flocculonodular lobes. The cerebellum contains a cerebellar circuit, using Purkinje cells and cerebellar peduncles to communicate to other parts of the brain. The superior cerebellar peduncle is composed of white matter that connects the cerebellum to the midbrain and allows for coordination in the arms and legs. The inferior cerebellar peduncle connects the medulla and cerebellum using proprioceptors to maintain balance and posture. Lastly, the middle cerebellar peduncle is used as a one-way communication method from the pons to the cerebellum. It is mostly composed of afferent fibers that alert the cerebellum about voluntary motor actions. The cerebellum is in constant communication with the cerebral cortex, taking higher-level instructions about the brain’s intentions, processing them through the cerebellar cortex, then sending messages to the cerebral motor cortex to make voluntary muscle contractions. These contractions are calculated to determine the force, direction, and momentum necessary to ensure each contraction is smooth and coordinated.
  • Limbic System – The limbic system is composed of the piriform cortex, hippocampus, septal nuclei, amygdala, nucleus accumbens, hypothalamus, and anterior nuclei of the thalamus. The fornix and fiber tracts connect the limbic system parts allowing them to control emotion, memory, and motivation. The piriform cortex is part of the olfactory system and is in the cortical area of the limbic system. The hypothalamus receives most of the limbic output, which explains psychosomatic illnesses, where emotional stressors cause somatic symptoms. For example, a patient who is currently having financial struggles might present to his primary care physician with hypertension and tachycardia. The septal nuclei, amygdala, and nucleus accumbens are found in the subcortical areas and are responsible for pleasure, emotional processing, and addiction, respectively.
  • Reticular formation – Reticular formation is an extensive network of pathways containing neurons that begins in the brainstem and travels from the top of the midbrain to the medulla oblongata. These pathways have projecting reticular neurons that affect the cerebral cortex, cerebellum, thalamus, hypothalamus, and spinal cord. The reticular formation controls the body’s level of consciousness through the reticular activation system, also known as RAS. Sensory axons, found in visual, auditory, and sensory impulses, activate RAS neurons in the brain stem. These neurons then relay information to the thalamus and cerebrum. Continuous stimulation of the RAS neurons causes the cerebrum to stay in an aroused state; this gives the feeling of alertness. However, RAS can filter out repetitive, weak stimuli; this prevents the brain from responding to unimportant information, as well as being sensory overloaded.
  • Spinal cord – The spinal cord proper extends from the foramen magnum of the skull to the first or second lumbar vertebrae. It creates a two-way pathway between the brain and the body and divides into four regions –  cervical, thoracic, lumbar, and sacral. These regions are then broken down into 31 segments with 31 pairs of spinal nerves. There are 8 cervical nerves, 12 thoracic nerves, 5 lumbar nerves, 5 sacral nerves, and 1 coccygeal nerve. Each nerve exits the vertebral column passing through the intervertebral foramina and to its designated location in the body. Due to cervical and lumbar enlargements, the spinal cord differs in width throughout its structure. The cervical enlargement occurs at C3 to T1, and the lumbar enlargement is at L1 to S2. The white matter is present on the outside of the spinal cord, with gray matter located in its core and cerebrospinal fluid in the central canal. The gray commissure, the dorsal, lateral, and ventral horns are all composed of gray matter. The gray commissure surrounds the central canal. The dorsal horns are made of interneurons, while the ventral horns are somatic motor neurons. Afferent neurons in the dorsal roots carry impulses from the body’s sensory receptors to the spinal cord, where the information begins to be processed. The ventral horns contain efferent motor neurons, which control the body’s periphery. The axons of motor neurons are found in the body’s skeletal and smooth muscle to regulate both involuntary and voluntary reflexes.  The spinal cord ends in a cone-shaped structure called conus medullaris and is supported to the end of the coccyx by the filum terminale. Ligaments are found throughout the spinal column, securing the spinal cord from top to bottom.
  • Ascending pathway to the brain – Sensory information travels from the body to the spinal cord before reaching the brain. This information ascends upwards using first, second, and third-order neurons. First-order neurons receive impulses from skin and proprioceptors and send them to the spinal cord. They then synapse with second-order neurons. Second-order neurons live in the dorsal horn and send impulses to the thalamus and cerebellum. Lastly, third-order neurons pick up these impulses in the thalamus and relay it to the somatosensory portion of the cerebrum. Somatosensory sensations are pressure, pain, temperature, and the body’s senses.
  • Descending pathway – Descending tracts send motor signals from the brain to lower motor neurons. These efferents neurons then produce muscle movement.
You Might Also Like   Female Reproductive System

Embryology

The adult brain and spinal cord begin to form during week 3 of embryological development. The ectoderm begins to thicken, forming the neural plate. The neutral place then folds inwards, creating the neural groove. Neural folds that migrate laterally flank the neural groove. The neural groove then develops into the neural tube, which forms the CNS structures.

The neural tube gets separated into an anterior and posterior end. The anterior end forms the primary brain vesicles, prosencephalon (forebrain), mesencephalon (midbrain), and rhombencephalon (hindbrain), while the posterior end becomes the spinal cord. The primary brain vesicles continue to differentiate, creating secondary brain vesicles. The forebrain separates to form the telencephalon and diencephalon, and the hindbrain splits to form the metencephalon and the myelencephalon (spinal brain). The midbrain does not divide and stays the mesencephalon. The development of the secondary brain vesicles produces the adult brain structures

  • Telencephalon to cerebrum
  • Diencephalon to hypothalamus, thalamus, retina
  • Mesencephalon to the brain stem (midbrain)
  • Metencephalon to the brain stem (pons), cerebellum
  • Myelencephalon to the brain stem (medulla oblongata)

The central part of the neural tube forms continuous, hollow cavities known as ventricles. During month 6 of gestation, the cerebral cortex changes from a smooth to wrinkled, convoluted appearance; this is due to the continued growth of the cerebral hemispheres. The elevated parts of the ridges are gyri, while the grooves have the name sulci. The convolutions allow for the increased surface area of the brain to fit within the skull. Throughout the brain, there are areas of white and gray matter. The gray matter contains neuronal cell bodies, dendrites, glia, and unmyelinated neurons. Contrary, white matter is composed of myelinated axons.

You Might Also Like   Musculoskeletal System - Types and What About You Need To Know

The spinal cord, formed from the caudal portion of the neural tube, is composed of both gray and white matter. At 6 weeks of gestation, the gray matter begins to aggregate, forming the dorsal alar plate and ventral basal plate. Interneurons form from the alar plate, while motor neurons form from the basal plate. Dorsal root ganglia, which brings information from the periphery to the spinal cord, arise for the neural crest cells.

Blood Supply and Lymphatics

Due to the importance and delicate nature of the central nervous system, the body closely monitors the blood traveling to and from it. The cardiovascular system ensures continuous, oxygenated blood as a drop-in oxygenation level can be detrimental. The common carotid arteries branch off of the aorta, which carries oxygen-rich blood from the heart for distribution. The common carotid further branches into right and left internal and external carotid arteries, which supply the cranium with blood. Vertebral arteries begin in the neck and branch as they enter into the skull through the foramen magnum. They supply the anterior portion of the spinal cord. The vertebral arteries then merge into the basilar artery. The basilar artery is responsible for delivering blood to the brainstem and cerebellum. The circle of Willis ensures that blood will continue to circulate even if one of the arteries is not working appropriately. The internal carotid and vertebral arteries compose the circle of Willis. After being used in the CNS, blood then travels back to the lungs for oxygenation. Multiple dural venous sinuses do this:

  • Superior sagittal sinus
  • The confluence of sinuses
  • Transverse sinuses
  • Sigmoid sinuses
  • Jugular veins
  • Carotid arteries
  • Superior vena cava
  • Lungs

Function

The cerebrum takes control over the motor and sensory information, as well as conscious and unconscious behaviors, feelings, intelligence, and memory. The left hemisphere is responsible for controlling speech, and abstract thinking (the ability to think about things that are not actually present), while the right hemisphere is in charge of spatial thinking (thinking that finds meaning in the shape, size, orientation, location, the direction of objects, processes or phenomena).

You Might Also Like   Pectoralis Minor; Functions, Origin, Nerve Supply

The motor and sensory neurons descending from the brain cross to the opposite side in the brainstem. This crossing means that the right side of the brain controls the motor and sensory functions of the left side of the body, and the left side of the brain controls the motor and sensory functions of the right side of the body. Hence, a stroke affecting the left brain hemisphere, for example, will exhibit motor and sensory deficits in the right side of the body.

Sensory neurons bring sensory input from the body to the thalamus. The sensory information then gets relayed to the cerebrum through the thalamus. Hunger, thirst, and sleep are under the control of the hypothalamus.

The cerebrum is composed of four lobes:

  • Frontal lobe: Is responsible for motor function, language, and cognitive processes, such as executive function, attention, memory, affect, mood, personality, self-awareness, and social and moral reasoning. Broca area is located in the frontal lobe and is responsible for speaking and writing skills.
  • Parietal love: Is responsible for interpreting vision, hearing, motor, sensory, and memory function.
  • Temporal lobe: Wernicke area is located here, which is responsible for understanding spoken and written language. The temporal lobe is also an essential part of the social brain. It processes sensory information for the retention of memories, language, and emotions. It also plays a major roll in hearing, spatial, and visual perception.
  • Occipital lobe: This is the location of the visual cortex, and it interprets visual information.

The cerebellum controls the coordination of voluntary movement. It receives sensory information from the brain and spinal cord and fine-tunes the precision and accuracy of the motor activity. It also aids in cognitive functions such as attention, language, pleasure response, and regulation of fear.

The brainstem acts as a bridge that connects the cerebrum and cerebellum to the spinal cord. It has the principal centers to perform autonomic functions such as breathing, temperature, respiration, heart rate, wake-sleep cycles, coughing, sneezing, digestion, vomiting, and swallowing.

References

About the author

Rx Harun administrator

Translate »