Cervical Injury – Causes, Symptoms, Treatment

Cervical Injury – Causes, Symptoms, Treatment

Cervical spine injuries, although uncommon, can result in significant and long-term disability. The cervical spine encompasses seven vertebrae and serves as a protection to the spinal cord. The segment of the spine most susceptible to injury is the cervical spine based on its anatomy and flexibility.

Causes Of 

The differential diagnosis for radiculopathy should include (but is not limited to) the following

Degenerative conditions of the spine (most common causes)

  • Spondylolisthesis – in the degenerative setting, this occurs as a result of a pathologic cascade including intervertebral disc degeneration, ensuing intersegmental instability, and facet joint arthropathy
  • Spinal stenosis – It causes especially in older age in maximum people.
  • Adult isthmic spondylolisthesis – is typically caused by an acquired defect in the par interarticularis
    • Pars defects (i.e. spondylolysis) in adults are most often secondary to repetitive microtrauma.

Trauma (e.g. burst fractures with bony fragment retropulsion)

  • Clinicians should recognize spinal fractures can occur in younger, healthy patient populations secondary to high-energy injuries (e.g. MVA, fall from height) or secondary low energy injuries and spontaneous fractures in the elderly populations, including any patient with osteoporosis
  • Associated hemorrhage from the injury can result in a deteriorating clinical and neurologic exam.

Benign or malignant tumors

  • Metastatic tumors (most common)
  • Primary tumors
  • Ependymoma
  • Schwannoma
  • Neurofibroma
  • Lymphoma
  • Lipomas
  • Paraganglioma
  • Ganglioneuroma
  • Osteoblastoma

Infection

  • Osteodiscitis
  • Osteomyelitis
  • Epidural abscess
  • Fungal infections (e.g. Tuberculosis)
  • Other infections: lyme disease, HIV/AIDS-defining ilnesses, Herpes zoster (HZ)

Vascular conditions

Cauda equina syndrome

  • History – Progressive motor/sensory loss, new urinary retention or incontinence, new fecal incontinence
  • Physical exam – Saddle anesthesia, anal sphincter atony, significant motor deficits of multiple myotomes

Fracture

  • History – Significant trauma (relative to age), Prolonged corticosteroid use, osteoporosis, and age greater than 70 years
  • Physical exam – Contusions, abrasions, tenderness to palpation over spinous processes

Infection

  • History – Spinal procedure within the last 12 months, Intravenous drug use, Immunosuppression, prior lumbar spine surgery
  • Physical exam – Fever, wound in the spinal region, localized pain, and tenderness

Malignancy

  • History – History of metastatic cancer, unexplained weight loss
  • Physical exam – Focal tenderness to palpation in the setting of risk factors

Symptoms Of Slipped Cervical Disc

The primary signs and symptoms of

  • LDH is radicular pain – sensory abnormalities, and weakness in the distribution of one or more nerve roots []. Focal paresis, restricted trunk flexion, and increases in leg pain with straining, coughing, and sneezing are also indicative []. Patients frequently report increased pain when sitting, which is known to increase disc pressure by nearly 40% [].
  • Pain that is relieved with sitting for forwarding flexion – is more consistent with lumbar spinal stenosis (LSS), as the latter motion increases disc pressure by 100–400% and would likely increase pain in isolated LDH []. Rainville et al. recently compared signs of LDH with LSS and found that LSS patients are more likely to have increased medical comorbidities, lower levels of disability and leg pain, abnormal Achilles reflexes, and pain primarily in the posterior knee [].
  • Numbness or tingling  – People who have a often have radiating numbness or tingling in the body part served by the affected nerves.
  • Weakness – Muscles served by the affected nerves tend to weaken. This can cause you to stumble, or affect your ability to lift or hold items.
  • Pain in the neck, back, low back, arms, or legs
  • Inability to bend or rotate the neck or back
  • Numbness or tingling in the neck, shoulders, arms, hands, hips, legs, or feet
  • Weakness in the arms or legs
  • Limping when walking
  • Increased pain when coughing, sneezing, reaching, or sitting
  • Inability to stand up straight; being “stuck” in a position, such as stooped forward or leaning to the side
  • Difficulty getting up from a chair
  • Inability to remain in 1 position for a long period of time, such as sitting or standing, due to pain
  • Pain that is worse in the morning
  • This is a sharp, often shooting pain that extends from the buttock down the back of one leg. It is caused by pressure on the spinal nerve.
  • Numbness or a tingling sensation in the leg and/or foot
  • Weakness in the leg and/or foot
  • Loss of bladder or bowel control. This is extremely rare and may indicate a more serious problem called cauda equina syndrome. This condition is caused by the spinal nerve roots being compressed.
You Might Also Like   Best Foosball Coffee Tables In 2020

Physical examination should include a detailed neurological examination. It should include:

  • Muscle strength grading, sensation, and eliciting deep tendon reflexes for both the upper and lower extremities
  • Evaluating any tenderness, range of motion, and crepitus

The NEXUS Low-risk Criteria and the Canadian C-Spine Rule are guidelines used to determine if cervical spine radiographs are indicated.

According to the NEXUS Low-Risk criteria, imaging is indicated if the patient exhibits any of the following:

  1. Midline Tenderness
  2. Focal Neurologic Deficit
  3. Altered Level of Consciousness
  4. Intoxication
  5. Distracting Injury

Radiographs may not be needed if all of the following criteria are met:

  • Absence of posterior midline cervical tenderness
  • The normal level of alertness
  • No evidence of intoxication
  • No abnormal neurologic findings
  • No painful distracting injuries

According to the Canadian C-Spine Rule, radiographs should be obtained based on the following algorithm:

Step 1: High-Risk Factors mandating radiography:

  • Age older than 65 years
  • Dangerous mechanism
  • Paraesthesia in extremities

If yes, the patient is at risk for cervical injury, if no, proceed to step two.

Step 2: Low-Risk factors indicate a safe assessment of a range of motion:

  • Simple rear-end motor vehicle collision
  • Patient ambulatory at any time since the injury
  • Delayed onset of neck pain
  • Patient in sitting position
  • Absence of midline cervical tenderness

If no low-risk factors present, radiography indicated, otherwise proceed to step three.

Step 3: Is the patient able to actively rotate neck 45 degrees to left and right?

If yes, radiography not indicated. If no, the patient is at risk for cervical injury, radiography indicated

CT scan

Due to higher exposure to radiation, CT should only be performed in high-risk patients such as those with altered mental status. If plain radiographs are normal, and the patient has no neurological deficits, flexion and extension x-rays should be obtained.

You Might Also Like   Systolic Hypertension - Causes, Symptoms, Diagnosis, Treatment

Obtain a CT scan if:

  • Cervical spine radiographs are inadequate
  • Concerning finding on plain radiographs
  • Fracture/displacement seen on plain radiographs
  • High-risk mechanism
  • Magnetic resonance imaging (MRI)

Consider MRI if neurologic signs or symptoms are present and plain radiographs and/or CT scans are normal. If the radiographs are normal despite neurological deficits, MRI may be indicated. MRI can also be used to evaluate the extent of nerve compression.

The classification of cervical spine injuries is based on the location. Injuries from the occiput to C2 can be classified as occipital-cervical spine injuries. C3 through C7 are classified as sub-axial cervical spine injuries. Wedge fractures are a result of flexion. Burst fractures are the result of vertical compression. Laminar fractures can either be vertical or horizontal and are usually associated with another type of fracture. Atlantooccipital dislocation is a flexion injury involving C1 and C2. Atlanto-axial dislocation is a flexion-rotation injury involving C1 and C2. Jefferson fractures are an unstable C1 fracture as a result of compression.

Jefferson fracture (C1)

This is a vertebral compression fracture of C1 when the force is transmitted through the occipital condyles to the superior articular surfaces of the lateral masses of C1. It results from axial loading. The fracture pattern correlates with the position of the head during impaction

It drives the lateral masses outward, disrupting the transverse ligament and resulting in fractures of the anterior and posterior arches of the atlas. It is an extremely unstable fracture.

A widening of the predental space between the anterior arch of C1 and the odontoid or dens may be seen on a lateral radiograph.

You Might Also Like   Technique To Increase Your Organic Traffic Using Ahrefs

The open-mouth view may show a bilateral offset of right and left lateral masses of C1 relative to the lateral masses of C2. If the sum of the offset distances from the right and left sides is more than 7 mm, then a fracture should be suspected.

Hangman’s Fracture (C2 Fracture)

The “hangman’s fracture” is a fracture of the pedicle of C2 caused by hyperextension of the spine due to abrupt deceleration. In this fracture, the skull, atlas, and axis function as a unit during hyperextension. Since the AP diameter of the neural canal is greatest at C2, cord damage is uncommon or minimal. A common mechanism is head-on MVCs.

Classification is based upon the amount of displacement of the fracture.

  • Type I: vertical fractures with less than 3 mm of displacement and no angulation
  • Type II:  more than 3 mm of displacement and angulation
  • Type III: vertical fractures with a significant displacement and highest risk of neurological deficit

Odontoid Fracture

The typical mechanism is flexion movement

  • Type I: Fracture of the odontoid process above the transverse ligaments (avulsion of the distal tip or apex) and usually stable
  • Type II: Fracture at the base of the odontoid process (dens) where it attaches to C2. More common fracture and unstable; often complicated by nonunion
  • Type III: Fracture extends laterally into the superior articular facet of the atlas (extends into the body of the axis) and unstable

Loading

If the article is helpful, please Click to Star Icon and Rate This Post!
[Total: 0 Average: 0]

About the author

Rx Harun administrator

Translate »