What Is Gastritis? – Causes, Symptoms, Treatment

What Is Gastritis? – Causes, Symptoms, Treatment

What Is Gastritis? It has its basis in histological features of the gastric mucosa. It is not erythema observed during gastroscopy, and there are no specific clinical presentations or symptoms defining it. The current classification of gastritis centers on time course (acute versus chronic), histological features, anatomic distribution, and underlying pathological mechanisms. Acute gastritis will evolve to chronic, if not treated. Helicobacter pylori (H. pylori) is the most common cause of gastritis worldwide. However, 60 to 70% of H. pylori-negative subjects with functional dyspepsia or non-erosive gastroesophageal reflux were also found to have gastritis. H. pylori-negative gastritis is a consideration when an individual fulfill all four of these criteria (i) A negative triple staining of gastric mucosal biopsies (hematoxylin and eosin, Alcian blue stain and a modified silver stain), (ii) A negative H pylori culture, (iii) A negative IgG H. pylori serology, and (iv) No self-reported history of H. pylori treatment. In these patients, the cause of gastritis may relate to tobacco smoking, consumption of alcohol, and/or the use of non-steroidal anti-inflammatory drugs (NSAIDs) or steroids.

Types of Gastritis

There are two kinds of gastritis: acute and chronic.

  • Acute gastritis is typically accompanied by very noticeable stomach and bowel problems that usually go away again on their own after a few days.
  • Chronic gastritis, on the other hand, may go unnoticed. Sometimes it’s not discovered until stomach ulcers have developed, which then cause noticeable symptoms.

Pathophysiology

H.pylori-associated gastritis transmission is via the fecal-oral route. H. pylori possess several virulence factors which facilitate cell adhesion (e.g., BabA/B, sabA, OipA), cell damage and disruption of tight junctions (e.g., Ure A/B), and evasion from the immune response (e.g. LPS). In particular, the cytotoxin-associated gene a (CagA) is considered a potent inducer of inflammation and correlate with gastric cancer development.

Another factor influencing H. pylori pathogenic effects is host factors. The host susceptible factors such as polymorphism in genes coding for tall receptors or specific cytokines. The infection with H. pylori triggers IL-8, which attracts neutrophils which release oxyradicals leading to cell damages. Lymphocyte infiltration is also present in H. pylori infection.

Chronic gastritis mostly results from H. pylori infection and appears either as non-atrophic or atrophic form. These two forms are phenotypes of gastritis at different stages of the same life-long disease.

The progression from acute to chronic gastritis begins in childhood as a simple chronic superficial mononuclear inflammation of gastric mucosa which progress in years or decades to atrophic gastritis characterized by loss of normal mucosal glands in the antrum, corpus, fundus or all.

Factors that determine progression to atrophic gastritis and sequelae such as a peptic ulcer or gastric cancer are not clearly understood and unpredictable. However, Epstein-Barr virus (EBV) and human cytomegalovirus (HCMV) have been identified in gastric tumors and DNA from H. pylori, EBV, and PCR determined the presence of HCMV in biopsies from patients with gastric cancer complicating chronic gastritis. Some researchers have confirmed the involvement of EBV and H. pylori in the development of gastric cancer in patients with chronic gastritis. They found no role for human papillomavirus (HPV) in gastric tumorigenesis.

NSAIDs cause gastritis through inhibition of prostaglandin synthesis. Prostaglandins are responsible for the maintenance of protective mechanisms of gastric mucosa from injuries caused by hydrochloric acid.

The pathogenesis of autoimmune gastritis focuses on two theories. According to the first theory, an immune response against superimposed H. pylori antigen gets triggered, antigen cross-reacting with antigens within the proton-pump protein or the intrinsic factor, leading to a cascade of cellular changes and causing damages to the parietal cells and stopping hydrochloric acid secretion and thus these cells gradually become atrophic and not functioning. The second theory assumes that the autoimmune disorder develops irrespective of H. pylori infection, and it directs itself against the proteins of the proton-pump. As per both theories, the autoimmune gastritis is the result of a complex interaction between genetic susceptibility and environmental factors resulting in immunological dysregulation involving sensitized T lymphocytes and autoantibodies directed against parietal cells and the intrinsic factor.

Causes of Gastritis

Other causes of gastritis include:

  • Autoimmune gastritis associated with serum anti-parietal and anti-intrinsic factor antibodies; characterized by chronic atrophic gastritis limited to the corpus and fundus of the stomach that is causing marked diffuse atrophy of parietal and chief cells.
  • Gastritis causes include organisms other than H. pylori such as Mycobacterium avium intracellulare, Herpes simplex, and Cytomegalovirus.
  • Gastritis caused by acid reflux. Rare causes of gastritis include collagenous gastritis, sarcoidosis, eosinophilic gastritis, and lymphocytic gastritis.

Clinical presentation, laboratory investigations, gastroscopy, as well as the histological and microbiological examination of tissue biopsies are essential for the diagnosis of gastritis and its causes. Treatment of H. pylori-associated gastritis results in the rapid disappearance of polymorphonuclear infiltration and a reduction of chronic inflammatory infiltrate with the gradual normalization of the mucosa. Mucosal atrophy and metaplastic changes may resolve shortly, but it is not necessarily the outcome of treatment of H. pylori in all treated patients. Other types of gastritis should be treated based on their causative etiology.

You Might Also Like   Alkalosis - Causes, Symptoms, Diagnosis, Treatment

Gastritis can be acute or chronic. The causes of gastritis can be summarized as follows :

  • H. pylori-associated gastritis: This is the most common cause of gastritis worldwide.
  • H. pylori-negative gastritis: The patients should fulfill all four of these criteria (i) A negative triple staining of gastric mucosal biopsies (hematoxylin and eosin, the Alcian blue stain and a modified silver stain), (ii) A negative H. pylori culture, (iii) A negative IgG H. pylori serology, and (iv) No self-reported history of H. pylori treatment. In these patients, the cause of gastritis may relate to tobacco smoking, consumption of alcohol, and/or the use of NSAIDs or steroids.
  • Autoimmune gastritis: This is a chronic inflammatory disease characterized by chronic atrophic gastritis and associated with raised serum anti-parietal and anti-intrinsic factor antibodies. The loss of parietal cells results in a reduction of gastric acid secretion, which is necessary for the absorption of inorganic iron. Therefore, iron deficiency is commonly a finding in patients with autoimmune gastritis. Iron deficiency in these patients usually precedes vitamin B12 deficiency. The disease is common in young women.
  • Gastritis may be the result of infection by organisms other than H. pylori such as Mycobacterium avium-intracellulare, enterococcal infection, Herpes simplex, and cytomegalovirus. Parasitic gastritis may result from cryptosporidium, Strongyloides stercoralis, or anisakiasis infection.
  • Gastritis may result from bile acid reflux.
  • Radiation gastritis.
  • Crohn disease-associated gastritis: This is an uncommon cause of gastritis.
  • Collagenous gastritis: This is a rare cause of gastritis. The disease characteristically presents with marked subepithelial collagen deposition accompanying with mucosal inflammatory infiltrate. The exact etiology and pathogenesis of collagenous gastritis are still unclear.
  • Eosinophilic gastritis: This is another rare cause of gastritis. The disease could be part of the eosinophilic gastrointestinal disorders which is characterized by the absence of known causes of eosinophilia (not secondary to an infection, systematic inflammatory disease, or any other causes to explain the eosinophilia).
  • Sarcoidosis-associated gastritis: Sarcoidosis is a multisystemic disorder characterized by the presence of non-caseating granulomas. Although sarcoidosis can affect any body organ, the gastrointestinal tract, including the stomach, is rarely affected.
  • Lymphocytic gastritis: This is a rare cause of gastritis. The etiology of lymphocytic gastritis remains unestablished, but an association with H. pylori infection or celiac disease has been suggested.
  • Ischemic gastritis: This is rare and associated with high mortality.
  • Vasculitis-associated gastritis: Diseases causing systemic vasculitis can cause granulomatous infiltration of the stomach. An example is Granulomatosis with polyangiitis, formerly known as Wegner granulomatosis.
  • Ménétrier disease: This disease is characterized by- (i) Presence of large gastric mucosal folds in the body and fundus of the stomach, (ii) Massive foveolar hyperplasia of surface and glandular mucous cells, (iii) Protein-losing gastropathy, hypoalbuminemia, and edema in 20 to 100% of patients, and (iv) reduced gastric acid secretion because of loss of parietal cells .

Symptoms of Gastritis

The symptoms of acute gastritis include the following:

  • Stomach pain
  • Feeling full
  • Heartburn
  • Nausea and sometimes vomiting
  • Belching
  • Lack of appetite
  • A bloated stomach

Some of these symptoms may also be signs of other conditions like gastro-esophageal reflux disease (GERD), an irritable stomach or bowel, and tummy bugs (gastroenteritis).

People with chronic gastritis often only have mild symptoms, or none at all. But they may have symptoms like those associated with acute gastritis.

Diagnosis of Gastritis

Histologically, gastritis definitively demonstrates by the presence of at least grade 2 neutrophils or mononuclear cells in at least one gastric biopsy site or grade 1 neutrophils or mononuclear cells in at least two sites. Sampling comes from five gastric biopsy specimens from the following locations: antrum greater and lesser curvature, incisura, and corpus greater and lesser curvature. Specimens must be put into separate vials and grouped for each site of the lesion. The aim is to maximize the opportunity to identify H. pylori and hence not to miss the diagnosis.

You Might Also Like   Causes Symptoms of Liver Disease, Treatment

H. pylori infection first appearance of gastritis tend to be antral. The inflammation, composing mainly of mononuclear inflammatory cells and plasma cells are superficial and mostly in the upper layers of the mucosa of the corpus (body of the stomach). The chronic inflammation of gastric mucosa is associated with neutrophilic inflammation; the effects are dependent on the cytotoxicity of the H. pylori strain. The most cytotoxic strains will result in the development of atrophic gastritis. The lost mucosal glands in atrophic gastritis become replaced with new immature glandular and epithelial cells resembling glands of intestinal tissues.

In early phases of autoimmune gastritis, lymphocytic and plasma cell infiltration of oxyntic mucosa is present with accentuation in deeper glandular portion. Hyperplasia of endocrine cells in gastric mucosa is an early feature in autoimmune gastritis. Oxyntic glands may undergo destruction, and parietal cells show pseudohypertrophy as the disease progress. In advanced disease, marked atrophy of the oxyntic glands together with diffuse lymphoblastic infiltration of the lamina propria are present. Intestinal metaplasia is present in end-stage disease.

History and Physical

There are no typical clinical manifestations of gastritis. Sudden onset of epigastric pain, nausea, and vomiting have been described to accompany acute gastritis. Many people are asymptomatic or develop minimal dyspeptic symptoms. If not treated the picture may evolve to chronic gastritis. History of smoking, consumption of alcohol, intake of NSAIDs or steroids, allergies, radiotherapy or gall bladder disorders should all be considerations. A history of treatment for inflammatory bowel disease, vasculitic disorders, or eosinophilic gastrointestinal disorders might require exploration if no cause of gastritis is apparent.

The most common initial findings for chronic and autoimmune gastritis are (1) hematological disorders such as anemia (iron-deficiency) detected on routine check-up, (2) positive histological examination of gastric biopsies, (3) clinical suspect based on the presence of other autoimmune disorders, neurological symptoms (related to vitamin B12 deficiency) or positive family history. Iron-deficiency anemia (based on blood film showing microscopic hypochromic changes as well as iron studies) commonly presents in the early stages of autoimmune gastritis. Achlorhydria causing impairment of iron absorption in the duodenum and early jejunum is the main cause. Iron-deficiency anemia could also occur in other types of chronic gastritis.

Autoimmune gastritis is associated with other autoimmune disorders (mainly thyroid diseases) including Hashimoto thyroiditis but also with Addison disease, chronic spontaneous urticaria, myasthenia gravis, Diabetes type 1, vitiligo, and perioral cutaneous autoimmune disorders especially erosive oral lichen planus. The association between chronic atrophic autoimmune gastritis and autoimmune thyroid disease earned the name in the early 60s of “thyrogastric syndrome.”

Evaluation

  • The diagnosis of gastritis has its basis in histopathological examination of gastric biopsy tissues. While medical history and laboratory tests are helpful, endoscopy and biopsy is the gold standard in making the diagnosis, identifying its distribution, severity, and cause.
  • The tests used for the diagnosis of H. pylori-associated gastritis fall into two main groups: (1) Invasive methods (requiring gastroscopy and biopsies): These include histological staining (hematoxylin and eosin, the Alcian blue stain and a modified silver stain), cultures, rapid urease test, and molecular detection (PCR DNA). (2) Non-invasive methods (not requiring gastroscopy and biopsies): These include urease breath test (13C-UBT), fecal antigen test, and serology. However, simultaneous treatment with proton-pump inhibitors leads to false-negative results in both invasive and non-invasive tests. Also, patients treated with proton-pump inhibitors usually have negative histological staining for H. pylori. Staining of gastric mucosal biopsies by immunohistochemistry is recommended to detect H. pylori.
  • Serological tests for detection of antibodies against H. pylori cannot differentiate between active and past infection.
  • The diagnosis of autoimmune gastritis centers on laboratory and histological examination. These include: (1) atrophic gastritis of gastric corpus (body) and fundus of the stomach, (2) autoantibodies against the intrinsic factor and the parietal cells, (3) raised serum gastrin levels, (4) serum pepsinogen 1 level and (5) pepsinogen 1 to pepsinogen 2 ratios.
  • The most sensitive serum biomarker in autoimmune gastritis is parietal cell antibodies (as compared to intrinsic factor antibodies).
  • The determination of the risk of gastric cancer in autoimmune gastritis is by (1) low levels of pepsinogen 1, (2) low pepsinogen 1/pepsinogen 2 ratios, (3) high fasting serum gastrin, (4) atrophic gastritis of the corpus and fundus. In these patients, the risk of cancer is high irrespective of whether they have or do not have on-going H. pylori infection.
  • Pernicious anemia is a condition of macrocytic anemia associated with low cobalamin levels and atrophic corpus-fundus gastritis associated with parietal cell antibodies or intrinsic factor autoantibodies.
  • Other tests that may be necessary for autoimmune gastritis are gastrin-17, IgG, and anti-H. pylori antibodies, cytokines (such as IL-8), and ghrelin (a growth-hormone-releasing peptide that is produced mainly by the gastric fundus mucosa).

Treatment of Gastritis

Treatment regimens differ from antibiotics (in H. pylori gastritis) to vitamin supplementation (in autoimmune metaplastic atrophic gastritis) to immunomodulatory therapy (in autoimmune enteropathy) to dietary modifications (in eosinophilic gastritis).

You Might Also Like   Intestinal Stoma - Indications, Contraindications

Gastritis is typically treated with acid-lowering medication. Depending on the type and severity of the symptoms, the following drugs can be used:

  • Proton pump inhibitors (PPIs) like omeprazole or pantoprazole reduce the production of stomach acid.
  • H2 blockers such as ranitidine and famotidine also reduce acid production.
  • Antacids like aluminium hydroxide or magnesium hydroxide neutralize the acid already in your stomach.

If the gastritis is caused by a Helicobacter infection, proton pump inhibitors are combined with two or three .

If it’s caused by a painkiller, you can consult your doctor about switching to a different medication or combining the painkiller with an acid-lowering drug. Should an NSAID have to be taken regularly, it’s possible to take it along with acid-lowering medication from the start, as a precaution.

H. pylori-associated gastritis: A triple-therapy of clarithromycin/proton-pump inhibitor/amoxicillin for 14 to 21 days is considered the first line of treatment. Clarithromycin is preferred over metronidazole because the recurrence rates with clarithromycin are far less compared to a triple-therapy using metronidazole. However, in areas where clarithromycin resistance is known, metronidazole is the option of choice. Quadruple bismuth containing therapy would be of benefit, particularly if using metronidazole.

After two eradication failures, H. pylori culture and tests for antibiotic resistance should be a consideration.

Autoimmune gastritis: Substitution of deficient iron and vitamin B12 (parenteral 1000 micrograms or oral 1000 to 2000 micrograms) is needed. Monitor Iron and folate levels, and eradicate any co-infection with H. pylori. Endoscopic surveillance for cancer risk and gastric neuroendocrine tumors (NET) is required.

Other forms of treatment in gastritis include cessation of alcohol, smoking, anti-inflammatory drugs, spicy food, as well as managing stress, immunomodulatory therapy in autoimmune enteropathy, and dietary modification in eosinophilic gastritis.

Differential Diagnosis

  • Infectious gastritis
  • Non-infectious gastritis
  • Peptic ulcer disease
  • Gastric cancer
  • Cholecystitis
  • Zollinger-Ellison syndrome
  • Dyspepsia
  • Gallstone disease
  • Pancreatitis
  • Autoimmune gastritis
  • Myocardial ischemia
  • Gastric involvement with inflammatory bowel disease, particularly Crohn disease
  • Menetrier disease
  • Lymphoma
  • Celiac disease
  • Multiple endocrine neoplasias

Complications

  • Peptic ulcer
  • Chronic atrophic gastritis (loss of appropriate glands resulting mainly from long-standing H. pylori infection)
  • Gastric metaplasia/dysplasia
  • Gastric cancer (adenocarcinoma)
  • Iron-deficiency anemia (chronic gastritis and early stages of gastric autoimmunity)
  • Vitamin B12 deficiency (autoimmune gastritis)
  • Gastric bleeding
  • Achlorhydria (autoimmune gastritis, chronic gastritis)
  • Gastric perforation
  • Mucosa-associated lymphoid tissue (MALT) lymphoma
  • Neuroendocrine tumors (NET) (previously referred to as gastric carcinoid; complicates autoimmune gastritis)

    • Autoimmune gastritis predisposes to the development of both gastric adenocarcinoma and gastric type 1 NET
    • The development of NET in these patients is related to mucosal atrophy and hyperplasia of immature mucus neck cells
    • The enhanced differentiation of immature precursor neck cells into histamine-producing enterochromaffin-like (ECL) cells secondary to hypergastrinemia is the process
  • Vitamin C, vitamin D, folic acid, zinc, magnesium, and calcium deficiency (atrophic autoimmune gastritis)

 

References

Loading

If the article is helpful, please Click to Star Icon and Rate This Post!
[Total: 0 Average: 0]

About the author

Rx Harun administrator

Translate »