Category Archive Fracture of Bone A-Z

ByRx Harun

Broken Ankle – Causes, Symptoms, Diagnosis, Treatment

Broken Ankle/An ankle fracture is a break of one or more ankle bones. Symptoms may include pain, swelling, bruising, and an inability to walk on the leg. Complications may include an associated high ankle sprain, compartment syndrome, decreased range of motion, and malunion.[rx][rx]

Fractures of the ankle joint are among the commonest fractures in adults, with an incidence of up to 174 cases per 100 000 persons per year [. For a good long-term functional outcome to be achieved, reliable early evaluation is crucial so that it can be determined whether the problem is a distortion (sprain), ligament rupture, bony ligament avulsion, or fracture of the talocrural joint. The proper treatment is chosen on the basis of the mechanism of the accident and the correct classification of the injury and accompanying soft-tissue damage. The goal of treatment is to enable the patient to put his or her full weight on the joint once again without pain and to prevent permanent damage.

The ankle joint is a highly complex joint. The ankle joint has multidirectional mobility for its complex role in supporting the weight of the body and fulfilling a myriad of daily functions. It is a combination of bones and ligaments structured around the talus. It includes the tibia, fibula, calcaneus, the tibiofibular ligament, the lateral ligament complex, and the medial ligament complex. The talocrural joint is the place where the distal tibia, distal fibula, and talus articulate. The tibia and fibula are anchored together via the syndesmosis. The syndesmosis consists of the interosseous membrane as well as the transverse, anterior, and posterior tibiofibular ligaments. There are both lateral and medial collateral ligament complexes which help to increase the stability of the ankle joint. The lateral collateral ligament forms from the fibulocalcanear ligament (FCL), the anterior fibulotalar ligament (AFTL), and the posterior fibulotalar ligament (PFTL). The medial collateral ligament consists of the deltoid ligament and the plantar calcaneonavicular ligament. The ankle joint moves in a unique way due to its structure. As the talus is asymmetric, the ankle is not purely a hinge joint. Instead, it acts as a rotary hinging movement. As many structures are involved in the ankle joint, in the context of an acute ankle fracture, it is easiest to think of it as a ring of structures situated around the talus. One break in the ring leads to a stable injury, while two or more breaks in the ring lead to an unstable injury.[rx][rx]

Relevant anatomy

The talocrural joint is the junction of three bony structures: the distal ends of the tibia and fibula and the trochlea of the talus. The tibia and fibula are elastically bound in the fork of the ankle joint by the ligamentous structures of the syndesmosis (interosseous membrane; anterior, posterior, and transverse tibiofibular ligaments) [, . Powerful collateral ligaments stabilize the joint against stress from the sides: laterally, the anterior tibiotalar ligament (AFTL), fibulocalcanear ligament (FCL), and posterior tibiotalar ligament (PFTL), and, medially, the broad fan of the deltoid ligament and the plantar calcaneonavicular ligament (spring ligament), whose medial border is blended with the forepart of the deltoid ligament. Because the talus is asymmetrically shaped, movement in the ankle joint is not a pure hinge movement, but rather a rotatory hinging movement around the helical axis of the joint [. Precise congruence of the ankle joint is essential for its proper function, and thus malpositions of traumatic origin have major adverse effects, as they alter the biomechanics of the joint and cause pathological compressive stress [, .

Ankle fractures are generally to be regarded as joint fractures even if there is no fracture cleft in any of the articular surfaces of the joint. For the ankle joint in particular, non-anatomical reductions and restraints lead to premature degeneration of the joint. Thus, proper anatomical reconstruction—generally involving surgery—is needed to prevent post-traumatic degeneration over the long term.

Pathophysiology of Broken Ankle

There are various methods to classify ankle fractures.

Percival Pott described ankle fractures in terms of the number of malleoli involved (unimalleolar, bimalleolar, and trimalleolar).

The Danis-Weber classification system categorizes ankle fractures by assessing the location of the distal fibula fracture in its relation to the syndesmosis.

  • A – Below syndesmosis
  • B – At the syndesmosis level
  • C – Above syndesmosis (i.e., Maisonneuve fracture)

Although this method describes the fracture relative to the syndesmosis, it does not accurately predict damage or injury to the syndesmosis. It also does not address damage to any medial ankle structure.

Type A is managed operatively with a closed repair. Type B & C require internal fixation.

The Lauge-Hansen classification system uses the mechanism of injury to determine the extent of injury to the ankle joint. By knowing the mechanism of injury or the deforming force, one can establish a sequence of injuries of the likely structures injured. Assessing the mechanism of injury can be valuable in deciding the appropriate treatment.

Supination-Adduction (SA)
  • Distal fibula transverse fracture
  • Medial malleolus vertical fracture
Supination-External Rotation (SER) – most common ankle injury (60% fractures)
  • Anterior inferior tibiofibular ligament injury
  • Spiral (or oblique) fracture of the distal fibula
  • Posterior inferior tibiofibular ligament injury OR posterior malleolus avulsion
  • Fracture of medial malleolus OR deltoid ligament injury
Pronation-External Rotation (PER)
  • Fracture of medial malleolus OR deltoid ligament injury
  • Anterior inferior tibiofibular ligament injury
  • Spiral (or oblique) fracture of the fibula (aspect proximal to tibial plafond)
  • Posterior inferior tibiofibular ligament injury OR posterior malleolus avulsion
Pronation-Abduction (PA)
  • Fracture of medial malleolus OR deltoid ligament injury
  • Anterior inferior tibiofibular ligament injury
  • Comminuted or transverse fibular fracture (proximal to tibial plafond)
1st word (position of the foot during the time of injury)
  • Pronation:  Eversion, abduction, dorsiflexion; medial ligaments stretched and prone to injury
  • Supination: Inversion, adduction, plantarflexion; lateral ligaments stretched and prone to injury

2nd word (movement of talus in ankle mortise relative to the tibia)   Injuries always occur in a cumulative pattern; for example, a SER4 injury includes injuries of SER1, SER2, and SER3.

Pronation-dorsiflexion injuries are not classified in either the Danis-Weber or the Lauge-Hansen systems. Although uncommon, it is a unique mechanism in which injury results from axial loading. An example of this type of injury is a pilon fracture. In this type of injury, the sequence of events is as follows:

  • Axial loading drives the talus into the tibia causing a medial malleolus fracture
  • Another fracture occurs at the anterior tibial margin
  • Supramalleolar fibular fracture
  • Transverse fracture of the posterior tibia

Talar fractures often result from sudden hyperextension. Most often they are avulsion fractures on the anterior aspect of the talar neck. CT is the imaging of choice for these fractures. Talar fractures can also be due to pronation injury, plantar hyperflexion injury, or dorsiflexion injury.[rx][rx][rx]

Classification

Danis-Weber classification (type A, B, and C)

There are several classification schemes for ankle fractures:

  • The Lauge-Hansen classification categorizes fractures – based on the mechanism of the injury as it relates to the position of the foot and the deforming force (most common type is supination-external rotation)
  • The Danis-Weber classification categorizes ankle fractures – by the level of the fracture of the distal fibula (type A = below the syndesmotic ligament, type B = at its level, type C = above the ligament), with use in assessing injury to the syndesmosis and the interosseous membrane
  • The Herscovici classification categorizes medial malleolus fractures –  of the distal tibia based on level.
  • The Ruedi-Allgower classification categorizes pilon – fractures of the distal tibia.

Fracture types

  • Pilon fracture (Plafond fracture) –a fracture of the distal part of the tibia, involving its articular surface at the ankle joint.
  • Wagstaffe-Le Fort avulsion fracture¨ –  a vertical fracture of the anteromedial part of the distal fibula with avulsion of the anterior tibiofibular ligament.
  • Tillaux fracture, a Salter-Harris type III fracture – through the anterolateral aspect of the distal tibial epiphysis.[rx]

Most common ankle fractures

  • Lateral malleolus fracture – This is the most common type of ankle fracture. It is a break of the lateral malleolus, the knobby bump on the outside of the ankle (in the lower portion of the fibula).
  • Bimalleolar ankle fracture – This second-most common type involves breaks of both the lateral malleolus and of the medial malleolus, the knobby bump on the inside of the ankle (in the lower portion of the tibia).
  • Trimalleolar ankle fracture – This type involves breaks in three sides of the ankle: the medial malleolus of the tibia, as well as the lateral malleolus and posterior malleolus (in the lower portion of the fibula).
  • Pilon fracture (also called a plafond fracture) – This is a fracture through the weight-bearing “roof” of the ankle (the central portion of the lower tibia). This is usually a higher energy traumatic injury resulting from a fall from a height.

As the number of fracture lines increase, so does the risk of long-term joint damage. Trimalleolar ankle fractures and pilon fractures have the most cartilage injury and, therefore, have a higher risk of arthritis in the future.

Causes of Broken Ankle

Ankle fractures can be caused by excessive strain to the ankle joint as well as by blunt trauma.[rx]

  • Trips and falls – Losing your balance may lead to trips and falls, which can place excessive weight on your ankle. This might happen if you walk on an uneven surface, wear ill-fitting shoes, or walk around without proper lighting.
  • Heavy impact – The force of a jump or fall can result in a broken ankle. It can happen even if you jump from a low height.
  • Missteps – You can break your ankle if you put your foot down awkwardly. Your ankle might twist or roll to the side as you put weight on it.
    Sports – High-impact sports involve intense movements that place stress on the joints, including the ankle. Examples of high-impact sports include soccer, football, and basketball.
  • Car collisions – The sudden, heavy impact of a car accident can cause broken ankles. Often, these injuries need surgical repair. The crushing injuries common in car accidents may cause breaks that require surgical repair.
  • Falls – Tripping, and falling can break bones in your ankles, as can landing on your feet after jumping down from just a slight height.
  • Missteps – Sometimes just putting your foot down wrong can result in a twisting injury that can cause a broken bone.
When you stress an ankle joint beyond the strength of its elements, you injure the joint.

  • If only the ligaments give way and tear, you have sprained the ankle.
  • If a bone gives way and breaks, you have an ankle fracture.
  •  Fractures can occur with simultaneous tears of the ligaments. You can do this in several ways:
    • Rolling the ankle in or out
    • Twisting the ankle side to side
    • Flexing or extending the joint
    • Applying severe force to the joint by coming straight down on it as in jumping from a high level

Symptoms of Broken Ankle

Symptoms of an ankle fracture can be similar to those of ankle sprains (pain), though typically they are often more severe by comparison. It is exceedingly rare for the ankle joint to dislocate in the presence of ligamentous injury alone. However, in the setting of an ankle fracture, the talus can become unstable and subluxate or dislocate. Patients may notice ecchymosis (“black and blue” coloration from bleeding under the skin), or there may be an abnormal position, alignment, gross instability, or lack of normal motion secondary to pain.

  • Pain, swelling, tenderness and bruising at your ankle joint
  • Inability to move your ankle through its normal range of motion
  • Inability to bear weight on your injured ankle — However, if you can bear weight on the ankle, don’t assume there is no fracture.
  • In some cases, a “crack” or “snap” in the ankle at the time of injury
  • In open fractures, severe ankle deformity, with portions of the fractured bone visible through broken skin
  • Pain at the site of the fracture, which in some cases can extend from the foot to the knee.
  • Significant swelling, which may occur along the length of the leg or may be more localized.
  • Blisters may occur over the fracture site. These should be promptly treated by a foot and ankle surgeon.
  • Bruising that develops soon after the injury.
  • Inability to walk; however, it is possible to walk with less severe breaks, so never rely on walking as a test of whether or not a bone has been fractured.
  • Change in the appearance of the ankle—it will look different from the other ankle.
  • Bone protruding through the skin—a sign that immediate care is needed. Fractures that pierce the skin require immediate attention because they can lead to severe infection and prolonged recovery.

Diagnosis of Broken Ankle

History and Physical
  • History is an integral part of any medical evaluation. In addition to the standard history (setting, chronology, location, quality, quantity, aggravating/alleviating factors, associated symptoms), it is important to ask specific questions targeted toward an ankle injury.
Questions include
  • Where is the pain? Is this an isolated injury or are there other injuries? Other injuries can be missed if there is a severely distracting injury such as an open ankle fracture-dislocation. Ankle fractures are usually the result of a twisting mechanism sustained as a result of a low-energy injury. A higher energy mechanism should raise the specter of compartment syndrome of the leg or a more grave injury such as a pilon fracture (axial loading). An ambulating patient is unlikely to have an unstable fracture.
  • The ankle position at the time of injury and subsequent direction of force generally dictates the fracture pattern, as described by the Lauge-Hansen classification system. Past medical history can also be an important factor. Prior injuries/surgeries to the affected joint may affect the presentation. Comorbidities including diabetes, peripheral vascular disease, and smoking can complicate wound and fracture healing or increase the risk of a Charcot neuroarthropathy. A patient’s baseline/goals should be established through a social history including the patient’s level of mobility pre-injury, home situation, and regular activities as well as their future functional goals.

Physical Examination  – Always examines the contralateral un-injured ankle first, as it helps to establish a baseline ankle examination (what it looked like before injury). It is also vital to examine the tibia, fibula, knee, and foot as well. Some injury mechanisms can cause other injuries superior to the ankle (i.e., Maisonneuve fracture). Examine the ankle visually for swelling, pain, ecchymosis, and soft tissue injury, including abrasions and lacerations.  Palpate the ankle to localize the point of injury. To ensure full examination, work methodically. Starting at the proximal tibia/fibula and working down. Once palpation is complete, perform examinations to assess neurological and vascular integrity.  Assess for sensation, motor function, capillary refill, and pulses. It is important to test the passive and active range of motion, as well as weight-bearing status. It is imperative to assess and continue to monitor for signs of compartment syndrome.[rx][rx][rx]

Evaluation

Ottawa Ankle Rules

Ankle radiographs should only be needed if there is pain or tenderness in either malleolus AND one of the following

  • Tenderness of the bone at the posterior edge or tip (within 6 cm) of either the lateral or medial malleolus
  • Patient unable to bear weight at the time of injury AND on arrival to the emergency department. Weight-bearing is determined by the patient’s ability to take four steps.

It is important to recall that this set of rules was developed to reduce the number of unnecessary radiographs ordered.  The reported sensitivity of the Ottawa ankle rules are close to 100%, but the specificity is highly variable across all studies; this is believed to be caused by user interpretation of the rules and provider dependent techniques in assessing tenderness on exam. Therefore, although effective, even the correct application of this rule does not 100% rule out an ankle fracture.

Radiological Features

Ankle x-ray: 3 view

  • AP view – assess for soft tissue swelling that may lead to the discovery of other more subtle fractures
  • Mortise view – taken with the foot in 15 degrees of internal rotation, evaluates talus positioning and syndesmosis widening
  • Lateral view – assess for anterior and/or posterior avulsion fractures assess for an effusion of ankle joint

If proximal leg tenderness is present or medial clear space widening with no obvious fibular fracture, radiographs of the tibia and fibula should be obtained to rule out the presence of a Maisonneuve injury. A Maisonneuve fracture is a proximal fibula spiral fracture with concomitant disruption of the distal fibular syndesmosis and interosseous membrane.

If your doctor suspects an ankle fracture, he or she will order additional tests to provide more information about your injury.

  • X-rays – X-rays are the most common and widely available diagnostic imaging technique. X-rays can show if the bone is broken and whether there is displacement (the gap between broken bones). They can also show how many pieces of broken bone there are. X-rays may be taken of the leg, ankle, and foot to make sure nothing else is injured.
  • Stress test – Depending on the type of ankle fracture, the doctor may put pressure on the ankle and take a special x-ray, called a stress test. This x-ray is done to see if certain ankle fractures require surgery.
  • Computed tomography (CT) scan – This type of scan can create a cross-section image of the ankle and is sometimes done to further evaluate the ankle injury. It is especially useful when the fracture extends into the ankle joint.
  • Magnetic resonance imaging (MRI) scan – These tests provide high-resolution images of both bones and soft tissues, like ligaments. For some ankle fractures, an MRI scan may be done to evaluate the ankle ligaments.
  • More complex axial imaging – is rarely necessary; exceptions include triplane and pilon fractures.
  • Posterior malleolus fractures usually require a CT – as the plain film underestimates the degree of impaction.
  • Weight-bearing radiographs – not indicated in the acute ankle fracture in the emergency department, usually used for more stable injuries in outpatient settings
  • MRI -although rarely emergently indicated is used to assess soft tissue, cartilaginous, or ligamentous injuries. It can also help to detect occult fractures.
  • Ultrasound – can be used to assess for fractures as well a ligament and tendon injuries; however, results are user-dependent.[rx][rx]

Differential Diagnosis

  • Rheumatoid arthritis
  • Charcot joint
  • Osteoid osteoma
  • Ewing’s sarcoma
  • Osteosarcoma
  • Pathologic fracture
  • Osteomyelitis
  • Septic arthritis
  • Osteoarthritis
  • Gout
  • Ankle sprain
  • Achilles rupture
  • Tendon dislocation

Treatment of Broken Ankle

Non-Surgical

Treatment available can be broadly

  • Get medical help immediately – If you fall on an outstretched arm, get into a car accident or are hit while playing a sport and feel intense pain in your leg area, then get medical care immediately.  cause significant pain in the front part of your leg closer to the base of your leg. You’ll innately know that something is seriously wrong because you won’t be able to lift your arm up above the heart level. Cleaning and treating any wounds on the skin of the injured hand.
  • Apply ice to your fractured area immediately – Before going to the hospital ankle fracture(regardless if you had surgery or not), you should apply a bag of crushed ice (or something cold) to your injured in order to reduce the swelling and numb the pain. Ice therapy is effective for acute (recent) injuries that involve swelling because it reduces blood flow by constricting local blood vessels. Apply the crushed for 15 minutes three to five times daily until the soreness and inflammation eventually fades away
  • Immobilization Alone – For a Boxer’s fracture that is closed, not angulated, and not malrotated or otherwise displaced, splinting is used for initial immobilization. An ankle fracture should be immobilized with alternatively, a pre-made Galveston splint or a custom orthosis may be used.
  • Lightly exercise after the pain fades – After a couple of weeks when the swelling has subsided and the pain has faded away, remove your leg for short periods and carefully move your leg in all different directions. Don’t aggravate the ankle fracture so that it hurts, but gently reintroduce movements to the involved joints and muscles. Start cautiously, maybe starting with light calisthenics and then progress to holding light weights (five-pound weights to start).
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for three to five weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)
  • Get a referral to physical therapy – Once you’ve recovered and able to remove your arm sling splint for good, you’ll likely notice that the muscles surrounding your ankle fracture look smaller and feel weaker. That’s because muscle tissue atrophies without movement. If this occurs, then you’ll need to get a referral for some physical rehabilitation. Rehab can start once you are cleared by your orthopedist, are pain-free, and can perform all the basic arm and phalanges movements. A physiotherapist or athletic trainer can show you specific rehabilitation exercises and stretches to restore your muscle strength, joint movements, and flexibility
  • Taping the hand – as a type of soft splint, with the pinky and ring finger, taped together to help in healing correction of the dislocated bone, which may be done with anesthesia.

Rest Your Hand

Once you’re discharged from the hospital in an arm sling, your top priority is to rest your hand and not further inflame the injury. Of course, the arm sling not only provides support, but it also restricts movement, which is why you should keep it on even during sleep. Avoiding the temptation to move your hand and arm will help the bone mend quicker and the pain fades away sooner.
  • Depending on what you do for a living and if the injury is to your dominant side, you may need to take a couple of weeks off work to recuperate.
  • Healing takes between four to six weeks in younger people and up to 12 weeks in the elderly, but it depends on the severity of the radial and phalangeal fractures 
  • Athletes in good health are typically able to resume their sporting activities within two months of breaking they’re depending on the severity of the break and the specific sport.
  • Sleeping on your back (with the sling on) is necessary to keep the pressure off your shoulder and prevent stress.

Eat Nutritiously During Your Recovery

All bones and tissues in the body need certain nutrients in order to heal properly and in a timely manner. Eating a nutritious and balanced diet that includes lots of minerals and vitamins is proven to help heal broken bones of all types, including. Therefore, focus on eating lots of fresh produce (fruits and veggies), whole grains, lean meats, and fish to give your body the building blocks needed to properly repair your. In addition, drink plenty of purified water, milk, and other dairy-based beverages to augment what you eat.

  • Broken bones need ample minerals (calcium, phosphorus, magnesium, boron) and protein to become strong and healthy again.
  • Excellent sources of minerals/protein include dairy products, tofu, beans, broccoli, nuts and seeds, sardines, and salmon.
  • Important vitamins that are needed for bone healing include vitamin C (needed to make collagen), vitamin D (crucial for mineral absorption), and vitamin K (binds calcium to bones and triggers collagen formation).
  • Conversely, don’t consume food or drink that is known to impair bone/tissue healing, such as alcoholic beverages, sodas, most fast food items, and foods made with lots of refined sugars and preservatives.

Medication

The following medications may be considered doctor to relieve acute and immediate pain

Surgery

All other types require surgery, most often an open reduction and internal fixation (ORIF), which is usually performed with permanently implanted metal hardware that holds the bones in place while the natural healing process occurs. A cast or splint will be required to immobilize the ankle following surgery.

In children, recovery may be faster with an ankle brace rather than a full cast in those with otherwise stable fractures.[rx]

Stable fractures are those that are non-displaced. These fractures receive conservative treatment. Patients with stable fractures can be discharged with unrestricted weight-bearing as tolerated. These patients can receive a walking boot and be discharged with a plan for X-ray in 1 week if stability is uncertain. It is essential to provide extensive ED return precautions in the case of a change in the status of the injury. Return precautions should include but not be limited to: uncontrolled pain, numbness, tingling, increased swelling, and decrease or change in their ability to bear weight.

Unstable fractures include those that are displaced, have talar shift, bimalleolar, and trimalleolar. These unstable fractures get treated with open reduction internal fixation (ORIF). If the patient has multiple comorbidities and is unable to tolerate surgical repair, there is the option for casting with 6 weeks of non-weight-bearing status. The ankle would need weekly ankle X-ray and the need for thromboprophylaxis needs to be assessed depending on other risk factors. This plan would require consultation with the orthopedic surgeon.[rx][rx]

Complications

Complications following ankle fractures can occur after both conservative nonoperative management and operative management.

  • Nonoperative management complications may include – compartment syndrome, dislocation, complex regional pain syndrome, limited range of motion, or inner pressure ulceration.
  • Operative management complications may include – compartment syndrome, wound hematoma, impaired wound healing, dislocation, mispositioned screws, inadequate reduction, complex regional pain syndrome, malunion, malposition, impingement syndrome, limited range of motion, or arthrosis.
  • A complication of ankle fracture – seen in people with diabetes is Charcot arthropathy which is also known as neuropathic arthropathy. This condition occurs when there is a progressive degeneration of the ankle joint, which leads to the destruction of the bone, increased bone resorption, which ultimately leads to deformity. Long-term complications of this may lead to ulceration, infection, or eventual amputation.
  • Thromboprophylaxis – is also essential in those with ankle fractures until full mobilization to prevent the development of DVT and pulmonary embolism.[rx][rx]
  • Arthritis – Fractures that extend into the joint can cause arthritis years later. If your ankle starts to hurt long after a break, see your doctor for an evaluation.
  • Bone infection (osteomyelitis) – If you have an open fracture, meaning one end of the bone protrudes through the skin, your bone may be exposed to bacteria that cause infection.
  • Compartment syndrome – This condition can rarely occur with ankle fractures. It causes pain, swelling and sometimes disability in affected muscles of the legs.
  • Nerve or blood vessel damage – Trauma to the ankle can injure nerves and blood vessels, sometimes actually tearing them. Seek immediate attention if you notice any numbness or circulation problems. Lack of blood flow can cause a bone to die and collapse.

Prevention

These basic sports and safety tips may help prevent a broken ankle:

  • Wear proper shoes – Use hiking shoes on rough terrain. Choose appropriate athletic shoes for your sport.
  • Replace athletic shoes regularly – Discard sneakers as soon as the tread or heel wears out or if the shoes are wearing unevenly. If you’re a runner, replace your sneakers every 300 to 400 miles.
  • Start slowly – That applies to a new fitness program and each individual workout.
  • Cross-train. Alternating activities can prevent stress fractures. Rotate running with swimming or biking.
  • Build bone strength – Get enough calcium and vitamin D. Calcium-rich foods include milk, yogurt and cheese. Ask your doctor if you need to take vitamin D supplements.
  • Declutter your house – Keeping clutter off the floor can help you to avoid trips and falls.
  • Strengthen your ankle muscles – If you are prone to twisting your ankle, ask your doctor for exercises to help strengthen the supporting muscles of your ankle.

References

ByRx Harun

Ankle Fracture – Causes, Symptoms, Diagnosis, Treatment

An ankle fracture is a break of one or more ankle bones. Symptoms may include pain, swelling, bruising, and an inability to walk on the leg. Complications may include an associated high ankle sprain, compartment syndrome, decreased range of motion, and malunion.[rx][rx]

Fractures of the ankle joint are among the commonest fractures in adults, with an incidence of up to 174 cases per 100 000 persons per year [. For a good long-term functional outcome to be achieved, reliable early evaluation is crucial so that it can be determined whether the problem is a distortion (sprain), ligament rupture, bony ligament avulsion, or fracture of the talocrural joint. The proper treatment is chosen on the basis of the mechanism of the accident and the correct classification of the injury and accompanying soft-tissue damage. The goal of treatment is to enable the patient to put his or her full weight on the joint once again without pain and to prevent permanent damage.

The ankle joint is a highly complex joint. The ankle joint has multidirectional mobility for its complex role in supporting the weight of the body and fulfilling a myriad of daily functions. It is a combination of bones and ligaments structured around the talus. It includes the tibia, fibula, calcaneus, the tibiofibular ligament, the lateral ligament complex, and the medial ligament complex. The talocrural joint is the place where the distal tibia, distal fibula, and talus articulate. The tibia and fibula are anchored together via the syndesmosis. The syndesmosis consists of the interosseous membrane as well as the transverse, anterior, and posterior tibiofibular ligaments. There are both lateral and medial collateral ligament complexes which help to increase the stability of the ankle joint. The lateral collateral ligament forms from the fibulocalcanear ligament (FCL), the anterior fibulotalar ligament (AFTL), and the posterior fibulotalar ligament (PFTL). The medial collateral ligament consists of the deltoid ligament and the plantar calcaneonavicular ligament. The ankle joint moves in a unique way due to its structure. As the talus is asymmetric, the ankle is not purely a hinge joint. Instead, it acts as a rotary hinging movement. As many structures are involved in the ankle joint, in the context of an acute ankle fracture, it is easiest to think of it as a ring of structures situated around the talus. One break in the ring leads to a stable injury, while two or more breaks in the ring lead to an unstable injury.[rx][rx]

Relevant anatomy

The talocrural joint is the junction of three bony structures: the distal ends of the tibia and fibula and the trochlea of the talus. The tibia and fibula are elastically bound in the fork of the ankle joint by the ligamentous structures of the syndesmosis (interosseous membrane; anterior, posterior, and transverse tibiofibular ligaments) [, . Powerful collateral ligaments stabilize the joint against stress from the sides: laterally, the anterior tibiotalar ligament (AFTL), fibulocalcanear ligament (FCL), and posterior tibiotalar ligament (PFTL), and, medially, the broad fan of the deltoid ligament and the plantar calcaneonavicular ligament (spring ligament), whose medial border is blended with the forepart of the deltoid ligament. Because the talus is asymmetrically shaped, movement in the ankle joint is not a pure hinge movement, but rather a rotatory hinging movement around the helical axis of the joint [. Precise congruence of the ankle joint is essential for its proper function, and thus malpositions of traumatic origin have major adverse effects, as they alter the biomechanics of the joint and cause pathological compressive stress [, .

Ankle fractures are generally to be regarded as joint fractures even if there is no fracture cleft in any of the articular surfaces of the joint. For the ankle joint in particular, non-anatomical reductions and restraints lead to premature degeneration of the joint. Thus, proper anatomical reconstruction—generally involving surgery—is needed to prevent post-traumatic degeneration over the long term.

Pathophysiology

There are various methods to classify ankle fractures.

Percival Pott described ankle fractures in terms of the number of malleoli involved (unimalleolar, bimalleolar, and trimalleolar).

The Danis-Weber classification system categorizes ankle fractures by assessing the location of the distal fibula fracture in its relation to the syndesmosis.

  • A – Below syndesmosis
  • B – At the syndesmosis level
  • C – Above syndesmosis (i.e., Maisonneuve fracture)

Although this method describes the fracture relative to the syndesmosis, it does not accurately predict damage or injury to the syndesmosis. It also does not address damage to any medial ankle structure.

Type A is managed operatively with a closed repair. Type B & C require internal fixation.

The Lauge-Hansen classification system uses the mechanism of injury to determine the extent of injury to the ankle joint. By knowing the mechanism of injury or the deforming force, one can establish a sequence of injuries of the likely structures injured. Assessing the mechanism of injury can be valuable in deciding the appropriate treatment.

Supination-Adduction (SA)
  • Distal fibula transverse fracture
  • Medial malleolus vertical fracture
Supination-External Rotation (SER) – most common ankle injury (60% fractures)
  • Anterior inferior tibiofibular ligament injury
  • Spiral (or oblique) fracture of the distal fibula
  • Posterior inferior tibiofibular ligament injury OR posterior malleolus avulsion
  • Fracture of medial malleolus OR deltoid ligament injury
Pronation-External Rotation (PER)
  • Fracture of medial malleolus OR deltoid ligament injury
  • Anterior inferior tibiofibular ligament injury
  • Spiral (or oblique) fracture of the fibula (aspect proximal to tibial plafond)
  • Posterior inferior tibiofibular ligament injury OR posterior malleolus avulsion
Pronation-Abduction (PA)
  • Fracture of medial malleolus OR deltoid ligament injury
  • Anterior inferior tibiofibular ligament injury
  • Comminuted or transverse fibular fracture (proximal to tibial plafond)
1st word (position of the foot during the time of injury)
  • Pronation:  Eversion, abduction, dorsiflexion; medial ligaments stretched and prone to injury
  • Supination: Inversion, adduction, plantarflexion; lateral ligaments stretched and prone to injury

2nd word (movement of talus in ankle mortise relative to the tibia)   Injuries always occur in a cumulative pattern; for example, a SER4 injury includes injuries of SER1, SER2, and SER3.

Pronation-dorsiflexion injuries are not classified in either the Danis-Weber or the Lauge-Hansen systems. Although uncommon, it is a unique mechanism in which injury results from axial loading. An example of this type of injury is a pilon fracture. In this type of injury, the sequence of events is as follows:

  • Axial loading drives the talus into the tibia causing a medial malleolus fracture
  • Another fracture occurs at the anterior tibial margin
  • Supramalleolar fibular fracture
  • Transverse fracture of the posterior tibia

Talar fractures often result from sudden hyperextension. Most often they are avulsion fractures on the anterior aspect of the talar neck. CT is the imaging of choice for these fractures. Talar fractures can also be due to pronation injury, plantar hyperflexion injury, or dorsiflexion injury.[rx][rx][rx]

Classification

Danis-Weber classification (type A, B, and C)

There are several classification schemes for ankle fractures:

  • The Lauge-Hansen classification categorizes fractures – based on the mechanism of the injury as it relates to the position of the foot and the deforming force (most common type is supination-external rotation)
  • The Danis-Weber classification categorizes ankle fractures – by the level of the fracture of the distal fibula (type A = below the syndesmotic ligament, type B = at its level, type C = above the ligament), with use in assessing injury to the syndesmosis and the interosseous membrane
  • The Herscovici classification categorizes medial malleolus fractures –  of the distal tibia based on level.
  • The Ruedi-Allgower classification categorizes pilon – fractures of the distal tibia.

Fracture types

  • Pilon fracture (Plafond fracture) –a fracture of the distal part of the tibia, involving its articular surface at the ankle joint.
  • Wagstaffe-Le Fort avulsion fracture¨ –  a vertical fracture of the anteromedial part of the distal fibula with avulsion of the anterior tibiofibular ligament.
  • Tillaux fracture, a Salter-Harris type III fracture – through the anterolateral aspect of the distal tibial epiphysis.[rx]

Most common ankle fractures

  • Lateral malleolus fracture – This is the most common type of ankle fracture. It is a break of the lateral malleolus, the knobby bump on the outside of the ankle (in the lower portion of the fibula).
  • Bimalleolar ankle fracture – This second-most common type involves breaks of both the lateral malleolus and of the medial malleolus, the knobby bump on the inside of the ankle (in the lower portion of the tibia).
  • Trimalleolar ankle fracture – This type involves breaks in three sides of the ankle: the medial malleolus of the tibia, as well as the lateral malleolus and posterior malleolus (in the lower portion of the fibula).
  • Pilon fracture (also called a plafond fracture) – This is a fracture through the weight-bearing “roof” of the ankle (the central portion of the lower tibia). This is usually a higher energy traumatic injury resulting from a fall from a height.

As the number of fracture lines increase, so does the risk of long-term joint damage. Trimalleolar ankle fractures and pilon fractures have the most cartilage injury and, therefore, have a higher risk of arthritis in the future.

Causes of Ankle Fracture

Ankle fractures can be caused by excessive strain to the ankle joint as well as by blunt trauma.[rx]

  • Trips and falls – Losing your balance may lead to trips and falls, which can place excessive weight on your ankle. This might happen if you walk on an uneven surface, wear ill-fitting shoes, or walk around without proper lighting.
  • Heavy impact – The force of a jump or fall can result in a broken ankle. It can happen even if you jump from a low height.
  • Missteps – You can break your ankle if you put your foot down awkwardly. Your ankle might twist or roll to the side as you put weight on it.
    Sports – High-impact sports involve intense movements that place stress on the joints, including the ankle. Examples of high-impact sports include soccer, football, and basketball.
  • Car collisions – The sudden, heavy impact of a car accident can cause broken ankles. Often, these injuries need surgical repair. The crushing injuries common in car accidents may cause breaks that require surgical repair.
  • Falls – Tripping, and falling can break bones in your ankles, as can landing on your feet after jumping down from just a slight height.
  • Missteps – Sometimes just putting your foot down wrong can result in a twisting injury that can cause a broken bone.
When you stress an ankle joint beyond the strength of its elements, you injure the joint.

  • If only the ligaments give way and tear, you have sprained the ankle.
  • If a bone gives way and breaks, you have an ankle fracture.
  •  Fractures can occur with simultaneous tears of the ligaments. You can do this in several ways:
    • Rolling the ankle in or out
    • Twisting the ankle side to side
    • Flexing or extending the joint
    • Applying severe force to the joint by coming straight down on it as in jumping from a high level

Symptoms of Ankle Fracture

Symptoms of an ankle fracture can be similar to those of ankle sprains (pain), though typically they are often more severe by comparison. It is exceedingly rare for the ankle joint to dislocate in the presence of ligamentous injury alone. However, in the setting of an ankle fracture, the talus can become unstable and subluxate or dislocate. Patients may notice ecchymosis (“black and blue” coloration from bleeding under the skin), or there may be an abnormal position, alignment, gross instability, or lack of normal motion secondary to pain.

  • Pain, swelling, tenderness and bruising at your ankle joint
  • Inability to move your ankle through its normal range of motion
  • Inability to bear weight on your injured ankle — However, if you can bear weight on the ankle, don’t assume there is no fracture.
  • In some cases, a “crack” or “snap” in the ankle at the time of injury
  • In open fractures, severe ankle deformity, with portions of the fractured bone visible through broken skin
  • Pain at the site of the fracture, which in some cases can extend from the foot to the knee.
  • Significant swelling, which may occur along the length of the leg or may be more localized.
  • Blisters may occur over the fracture site. These should be promptly treated by a foot and ankle surgeon.
  • Bruising that develops soon after the injury.
  • Inability to walk; however, it is possible to walk with less severe breaks, so never rely on walking as a test of whether or not a bone has been fractured.
  • Change in the appearance of the ankle—it will look different from the other ankle.
  • Bone protruding through the skin—a sign that immediate care is needed. Fractures that pierce the skin require immediate attention because they can lead to severe infection and prolonged recovery.

Diagnosis of Ankle Fracture

History and Physical
  • History is an integral part of any medical evaluation. In addition to the standard history (setting, chronology, location, quality, quantity, aggravating/alleviating factors, associated symptoms), it is important to ask specific questions targeted toward an ankle injury.
Questions include
  • Where is the pain? Is this an isolated injury or are there other injuries? Other injuries can be missed if there is a severely distracting injury such as an open ankle fracture-dislocation. Ankle fractures are usually the result of a twisting mechanism sustained as a result of a low-energy injury. A higher energy mechanism should raise the specter of compartment syndrome of the leg or a more grave injury such as a pilon fracture (axial loading). An ambulating patient is unlikely to have an unstable fracture.
  • The ankle position at the time of injury and subsequent direction of force generally dictates the fracture pattern, as described by the Lauge-Hansen classification system. Past medical history can also be an important factor. Prior injuries/surgeries to the affected joint may affect the presentation. Comorbidities including diabetes, peripheral vascular disease, and smoking can complicate wound and fracture healing or increase the risk of a Charcot neuroarthropathy. A patient’s baseline/goals should be established through a social history including the patient’s level of mobility pre-injury, home situation, and regular activities as well as their future functional goals.

Physical Examination  – Always examines the contralateral un-injured ankle first, as it helps to establish a baseline ankle examination (what it looked like before injury). It is also vital to examine the tibia, fibula, knee, and foot as well. Some injury mechanisms can cause other injuries superior to the ankle (i.e., Maisonneuve fracture). Examine the ankle visually for swelling, pain, ecchymosis, and soft tissue injury, including abrasions and lacerations.  Palpate the ankle to localize the point of injury. To ensure full examination, work methodically. Starting at the proximal tibia/fibula and working down. Once palpation is complete, perform examinations to assess neurological and vascular integrity.  Assess for sensation, motor function, capillary refill, and pulses. It is important to test the passive and active range of motion, as well as weight-bearing status. It is imperative to assess and continue to monitor for signs of compartment syndrome.[rx][rx][rx]

Evaluation

Ottawa Ankle Rules

Ankle radiographs should only be needed if there is pain or tenderness in either malleolus AND one of the following

  • Tenderness of the bone at the posterior edge or tip (within 6 cm) of either the lateral or medial malleolus
  • Patient unable to bear weight at the time of injury AND on arrival to the emergency department. Weight-bearing is determined by the patient’s ability to take four steps.

It is important to recall that this set of rules was developed to reduce the number of unnecessary radiographs ordered.  The reported sensitivity of the Ottawa ankle rules are close to 100%, but the specificity is highly variable across all studies; this is believed to be caused by user interpretation of the rules and provider dependent techniques in assessing tenderness on exam. Therefore, although effective, even the correct application of this rule does not 100% rule out an ankle fracture.

Radiological Features

Ankle x-ray: 3 view

  • AP view – assess for soft tissue swelling that may lead to the discovery of other more subtle fractures
  • Mortise view – taken with the foot in 15 degrees of internal rotation, evaluates talus positioning and syndesmosis widening
  • Lateral view – assess for anterior and/or posterior avulsion fractures assess for an effusion of ankle joint

If proximal leg tenderness is present or medial clear space widening with no obvious fibular fracture, radiographs of the tibia and fibula should be obtained to rule out the presence of a Maisonneuve injury. A Maisonneuve fracture is a proximal fibula spiral fracture with concomitant disruption of the distal fibular syndesmosis and interosseous membrane.

If your doctor suspects an ankle fracture, he or she will order additional tests to provide more information about your injury.

  • X-rays – X-rays are the most common and widely available diagnostic imaging technique. X-rays can show if the bone is broken and whether there is displacement (the gap between broken bones). They can also show how many pieces of broken bone there are. X-rays may be taken of the leg, ankle, and foot to make sure nothing else is injured.
  • Stress test – Depending on the type of ankle fracture, the doctor may put pressure on the ankle and take a special x-ray, called a stress test. This x-ray is done to see if certain ankle fractures require surgery.
  • Computed tomography (CT) scan – This type of scan can create a cross-section image of the ankle and is sometimes done to further evaluate the ankle injury. It is especially useful when the fracture extends into the ankle joint.
  • Magnetic resonance imaging (MRI) scan – These tests provide high-resolution images of both bones and soft tissues, like ligaments. For some ankle fractures, an MRI scan may be done to evaluate the ankle ligaments.
  • More complex axial imaging – is rarely necessary; exceptions include triplane and pilon fractures.
  • Posterior malleolus fractures usually require a CT – as the plain film underestimates the degree of impaction.
  • Weight-bearing radiographs – not indicated in the acute ankle fracture in the emergency department, usually used for more stable injuries in outpatient settings
  • MRI -although rarely emergently indicated is used to assess soft tissue, cartilaginous, or ligamentous injuries. It can also help to detect occult fractures.
  • Ultrasound – can be used to assess for fractures as well a ligament and tendon injuries; however, results are user-dependent.[rx][rx]

Differential Diagnosis

  • Rheumatoid arthritis
  • Charcot joint
  • Osteoid osteoma
  • Ewing’s sarcoma
  • Osteosarcoma
  • Pathologic fracture
  • Osteomyelitis
  • Septic arthritis
  • Osteoarthritis
  • Gout
  • Ankle sprain
  • Achilles rupture
  • Tendon dislocation

Treatment of Ankle Fracture

Non-Surgical

Treatment available can be broadly

  • Get medical help immediately – If you fall on an outstretched arm, get into a car accident or are hit while playing a sport and feel intense pain in your leg area, then get medical care immediately.  cause significant pain in the front part of your leg closer to the base of your leg. You’ll innately know that something is seriously wrong because you won’t be able to lift your arm up above the heart level. Cleaning and treating any wounds on the skin of the injured hand.
  • Apply ice to your fractured area immediately – Before going to the hospital ankle fracture(regardless if you had surgery or not), you should apply a bag of crushed ice (or something cold) to your injured in order to reduce the swelling and numb the pain. Ice therapy is effective for acute (recent) injuries that involve swelling because it reduces blood flow by constricting local blood vessels. Apply the crushed for 15 minutes three to five times daily until the soreness and inflammation eventually fades away
  • Immobilization Alone – For a Boxer’s fracture that is closed, not angulated, and not malrotated or otherwise displaced, splinting is used for initial immobilization. An ankle fracture should be immobilized with alternatively, a pre-made Galveston splint or a custom orthosis may be used.
  • Lightly exercise after the pain fades – After a couple of weeks when the swelling has subsided and the pain has faded away, remove your leg for short periods and carefully move your leg in all different directions. Don’t aggravate the ankle fracture so that it hurts, but gently reintroduce movements to the involved joints and muscles. Start cautiously, maybe starting with light calisthenics and then progress to holding light weights (five-pound weights to start).
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for three to five weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)
  • Get a referral to physical therapy – Once you’ve recovered and able to remove your arm sling splint for good, you’ll likely notice that the muscles surrounding your ankle fracture look smaller and feel weaker. That’s because muscle tissue atrophies without movement. If this occurs, then you’ll need to get a referral for some physical rehabilitation. Rehab can start once you are cleared by your orthopedist, are pain-free, and can perform all the basic arm and phalanges movements. A physiotherapist or athletic trainer can show you specific rehabilitation exercises and stretches to restore your muscle strength, joint movements, and flexibility
  • Taping the hand – as a type of soft splint, with the pinky and ring finger, taped together to help in healing correction of the dislocated bone, which may be done with anesthesia.

Rest Your Hand

Once you’re discharged from the hospital in an arm sling, your top priority is to rest your hand and not further inflame the injury. Of course, the arm sling not only provides support, but it also restricts movement, which is why you should keep it on even during sleep. Avoiding the temptation to move your hand and arm will help the bone mend quicker and the pain fades away sooner.
  • Depending on what you do for a living and if the injury is to your dominant side, you may need to take a couple of weeks off work to recuperate.
  • Healing takes between four to six weeks in younger people and up to 12 weeks in the elderly, but it depends on the severity of the radial and phalangeal fractures 
  • Athletes in good health are typically able to resume their sporting activities within two months of breaking they’re depending on the severity of the break and the specific sport.
  • Sleeping on your back (with the sling on) is necessary to keep the pressure off your shoulder and prevent stress.

Eat Nutritiously During Your Recovery

All bones and tissues in the body need certain nutrients in order to heal properly and in a timely manner. Eating a nutritious and balanced diet that includes lots of minerals and vitamins is proven to help heal broken bones of all types, including. Therefore, focus on eating lots of fresh produce (fruits and veggies), whole grains, lean meats, and fish to give your body the building blocks needed to properly repair your. In addition, drink plenty of purified water, milk, and other dairy-based beverages to augment what you eat.

  • Broken bones need ample minerals (calcium, phosphorus, magnesium, boron) and protein to become strong and healthy again.
  • Excellent sources of minerals/protein include dairy products, tofu, beans, broccoli, nuts and seeds, sardines, and salmon.
  • Important vitamins that are needed for bone healing include vitamin C (needed to make collagen), vitamin D (crucial for mineral absorption), and vitamin K (binds calcium to bones and triggers collagen formation).
  • Conversely, don’t consume food or drink that is known to impair bone/tissue healing, such as alcoholic beverages, sodas, most fast food items, and foods made with lots of refined sugars and preservatives.

Medication

The following medications may be considered doctor to relieve acute and immediate pain

Surgery

All other types require surgery, most often an open reduction and internal fixation (ORIF), which is usually performed with permanently implanted metal hardware that holds the bones in place while the natural healing process occurs. A cast or splint will be required to immobilize the ankle following surgery.

In children, recovery may be faster with an ankle brace rather than a full cast in those with otherwise stable fractures.[rx]

Stable fractures are those that are non-displaced. These fractures receive conservative treatment. Patients with stable fractures can be discharged with unrestricted weight-bearing as tolerated. These patients can receive a walking boot and be discharged with a plan for X-ray in 1 week if stability is uncertain. It is essential to provide extensive ED return precautions in the case of a change in the status of the injury. Return precautions should include but not be limited to: uncontrolled pain, numbness, tingling, increased swelling, and decrease or change in their ability to bear weight.

Unstable fractures include those that are displaced, have talar shift, bimalleolar, and trimalleolar. These unstable fractures get treated with open reduction internal fixation (ORIF). If the patient has multiple comorbidities and is unable to tolerate surgical repair, there is the option for casting with 6 weeks of non-weight-bearing status. The ankle would need weekly ankle X-ray and the need for thromboprophylaxis needs to be assessed depending on other risk factors. This plan would require consultation with the orthopedic surgeon.[rx][rx]

Complications

Complications following ankle fractures can occur after both conservative nonoperative management and operative management.

  • Nonoperative management complications may include – compartment syndrome, dislocation, complex regional pain syndrome, limited range of motion, or inner pressure ulceration.
  • Operative management complications may include – compartment syndrome, wound hematoma, impaired wound healing, dislocation, mispositioned screws, inadequate reduction, complex regional pain syndrome, malunion, malposition, impingement syndrome, limited range of motion, or arthrosis.
  • A complication of ankle fracture – seen in people with diabetes is Charcot arthropathy which is also known as neuropathic arthropathy. This condition occurs when there is a progressive degeneration of the ankle joint, which leads to the destruction of the bone, increased bone resorption, which ultimately leads to deformity. Long-term complications of this may lead to ulceration, infection, or eventual amputation.
  • Thromboprophylaxis – is also essential in those with ankle fractures until full mobilization to prevent the development of DVT and pulmonary embolism.[rx][rx]
  • Arthritis – Fractures that extend into the joint can cause arthritis years later. If your ankle starts to hurt long after a break, see your doctor for an evaluation.
  • Bone infection (osteomyelitis) – If you have an open fracture, meaning one end of the bone protrudes through the skin, your bone may be exposed to bacteria that cause infection.
  • Compartment syndrome – This condition can rarely occur with ankle fractures. It causes pain, swelling and sometimes disability in affected muscles of the legs.
  • Nerve or blood vessel damage – Trauma to the ankle can injure nerves and blood vessels, sometimes actually tearing them. Seek immediate attention if you notice any numbness or circulation problems. Lack of blood flow can cause a bone to die and collapse.

Prevention

These basic sports and safety tips may help prevent a broken ankle:

  • Wear proper shoes – Use hiking shoes on rough terrain. Choose appropriate athletic shoes for your sport.
  • Replace athletic shoes regularly – Discard sneakers as soon as the tread or heel wears out or if the shoes are wearing unevenly. If you’re a runner, replace your sneakers every 300 to 400 miles.
  • Start slowly – That applies to a new fitness program and each individual workout.
  • Cross-train. Alternating activities can prevent stress fractures. Rotate running with swimming or biking.
  • Build bone strength – Get enough calcium and vitamin D. Calcium-rich foods include milk, yogurt and cheese. Ask your doctor if you need to take vitamin D supplements.
  • Declutter your house – Keeping clutter off the floor can help you to avoid trips and falls.
  • Strengthen your ankle muscles – If you are prone to twisting your ankle, ask your doctor for exercises to help strengthen the supporting muscles of your ankle.

References

ByRx Harun

What Is Boxer’s fracture? – Causes, Symptoms, Treatment

What Is Boxer’s fracture?/Metacarpal fractures account for 40% of all hand fractures.  A Boxer’s fracture is a fracture of the fifth metacarpal neck, named for the classic mechanism of injury in which direct trauma is applied to a clenched fist.  This represents 10% of all hand fractures. Treatment for a Boxer’s fracture varies based on whether the fracture is open or closed, characteristics of the fracture including the degree of angulation, shortening, and rotation, and other concomitant injuries. Immobilization with an ulnar gutter splint may be the definitive treatment for closed, non-displaced fractures without angulation or rotation, while open fractures, significantly angulated or malrotated fractures or those involving injury to neurovascular structures may require operative fixation.

Pathophysiology

The fifth metacarpal bone is one of the five metacarpal bones of the hand. The fifth metacarpal is associated with the fifth digit. The metacarpal bone consists of a head (distally located), neck, body, and base (proximally located). Axial load via direct trauma to a clenched fist transfers energy to the metacarpal bone, causing fractures most commonly at the neck, and typically resulting in apex dorsal angulation due in part to the forces exerted by the pull of the interosseous muscles. The interosseous muscles, responsible for adduction and abduction of the fingers, originate from the metacarpal shafts and insert onto proximal phalanges. The collateral ligaments also join the metacarpal bones to the proximal phalanges and must be taken into consideration during splinting to minimize the risk of loss of motion due to shortening of the ligaments. The ligaments are taut in flexion, and more slack in extension, therefore the MCP joints should be splinted in flexion to prevent shortening (intrinsic plus positioning). The arteries and nerves supplying the fingers are adjacent to the metacarpal bones and can be injured in severely displaced Boxer’s fractures, requiring surgical intervention.

Boxer’s Fracture

Causes Of Boxer’s Fracture

The most common mechanism of injury for Boxer’s fracture is punching, e.g., the axial pressure applied to the metacarpal bone when the fist is in a clenched position. Direct trauma to the dorsum of the hand may also cause a fracture of the fifth metacarpal neck. Unlike many other hand and wrist fractures, a Boxer’s fracture typically does not occur with a fall onto an outstretched hand.

Boxer’s Fracture

  • Injury to the phalanges – occurs with direct, blunt trauma, penetrating trauma, and crush injuries.
  • Sudden forceful  fall down
  • Road traffic accident
  • Falls – Falling onto an outstretched hand is one of the most common causes of broken and fractures.
  • Sports injuries – Many fractures occur during contact sports or sports in which you might fall onto an outstretched hand — such as in-line skating or snowboarding.
  • Motor vehicle crashes – Motor vehicle crashes can cause wrist bones to break, sometimes into many pieces, and often require surgical repair.
  • Have osteoporosis –  a disease that weakens your bones
  • Eave low muscle mass or poor muscle strength – or lack agility and have poor balance (these conditions make you more likely to fall)
  • Walk or do other activities in the snow or on the ice – or do activities that require a lot of forwarding momenta, such as in-line skating and skiing
  • Wave an inadequate intake of calcium or vitamin D
  • Football or soccer, especially on artificial turf
  • Rugby
  • Horseback riding
  • Hockey
  • Skiing
  • Snowboarding
  • In-line skating
  • Jumping on a trampoline

Symptoms of Boxer’s Fracture

The symptoms are pain and tenderness in the specific location of the hand, which corresponds to the metacarpal bone around the knuckle.

  • There will be swelling of the hand along with discoloration or bruising in the affected area. Abrasions or lacerations of the hand are also likely to occur. The respective finger may be misaligned, and the movement of that finger may be limited and painful.
  • Painful bruising and swelling of the back and front of the hand
  • The pain of the back of the hand in the area of the fractured 5th metacarpal
  • The bent, claw-like pinky finger that looks out of alignment
  • Limited range of motion of the hand and of the 4th and 5th fingers
  • When a fracture occurs, there may be a snapping or popping sensation.
  • Tenderness near the base of the pinky finger
  • Inability or limited ability to move the pinky or ring finger
  • The knuckles of the affected finger appearing flat and no longer protruding as usual
  • Problems trying to grip with the injured hand
  • Numbness
  • Coldness in the hand

Boxer’s Fracture

Diagnosis of Fifth Metacarpal Fractures

History and Physical

Patients with Boxer’s fractures present with complaints of dorsal hand pain, swelling, and possible deformity in the setting of one of the mechanisms typically associated with this injury involving direct trauma to the hand.

Complete physical exam of a potential Boxer’s fracture should include an examination of the entire hand, comparison to the contralateral hand, with special attention to the following:

  • Skin – Closely inspect the skin for any breaks, especially near the metacarpal head, typically the point of impact. When a Boxer’s fracture is sustained by a blow to the face, the recipient’s tooth may cause a laceration or abrasion known as a “fight bite.” This may require operative irrigation and debridement.
  • Neurovascular exam – As with all suspected fractures, a neurovascular exam should test for sensation, motor function, and blood flow distal to the injury.
  • Angulation – Boxer’s fractures are typically associated with apex dorsal angulation, thereby resulting in depression of the MCP joint and loss of the normal knuckle contour. With significantly angulated fractures, “pseudo-clawing” may be observed due to damage to the extensor apparatus; pseudo-clawing is a hyperextension of the MCP joint and flexion at the PIP joint. The degree of angulation is determined using plain films.
  • Rotational alignment – Any degree of malrotation warrants referral to a hand surgeon and therefore assessment of rotational alignment is a crucial component of the physical exam. Alignment can be assessed by examining the hand with the MCP and PCP joints in flexion, and DIP joints extended. If lines are drawn along the digits and extended distally, normally aligned digits will show the convergence of these lines. If the line extended from the fifth finger does not converge towards the others, suspect malrotation.
  • Malrotation – can also be detected by examining the hand with the MCPs flexed, and PCPs and DIPs extended. The fingernails should be in line along a single plane.

Imaging

  • Plain radiographs – are the standard of care to diagnose Boxer’s fractures and determine a degree of angulation. Anteroposterior, lateral, and oblique views should be obtained. The lateral view should be used to measure the degree of angulation of the shaft of the metacarpal as compared to the mid-point of the fracture fragment. Normal angulation of the metacarpal head to the neck is 15 degrees, so the angulation of the fracture should be measured as that more than the baseline of 15 degrees.
  • Ultrasound – Recent literature suggests that bedside ultrasound may also be used to make an initial diagnosis of a Boxer’s fracture.
  • CT Scan – is generally not used for the diagnosis of metacarpal fractures; however occult fractures may be detected via CT in patients for whom there is a high degree of clinical suspicion for fracture and negative plain radiographs.

Boxer’s Fracture

Treatment of Fifth Metacarpal Fractures

Non-Surgical

Treatment available can be broadly

  • Get medical help immediately – If you fall on an outstretched arm, get into a car accident or are hit while playing a sport and feel intense pain in your shoulder area, then get medical care immediately.  cause significant pain in the front part of your shoulder, closer to the base of your hand. You’ll innately know that something is seriously wrong because you won’t be able to lift your arm up above the heart level. Cleaning and treating any wounds on the skin of the injured hand.
  • Apply ice to your fractured area immediately – Before going to the hospital metacarpal fractures /boxer’s fracture(regardless if you had surgery or not), you should apply a bag of crushed ice (or something cold) to your injured in order to reduce the swelling and numb the pain. Ice therapy is effective for acute (recent) injuries that involve swelling because it reduces blood flow by constricting local blood vessels. Apply the crushed for 15 minutes three to five times daily until the soreness and inflammation eventually fades away
  • Immobilization Alone – For a Boxer’s fracture that is closed, not angulated, and not malrotated or otherwise displaced, splinting is used for initial immobilization. A Boxer’s fracture should be immobilized with an ulnar gutter splint. Alternatively, a pre-made Galveston splint or a custom orthosis may be used. The hand should be positioned in the intrinsic plus position for splinting mild wrist extension, 70 to 90 degrees of flexion at MCP joint, and slight flexion at the DIP and PIP joints. Flexion of these joints is important to prevent shortening of the collateral ligaments and subsequent loss of range of motion and functional impairment.
  • Lightly exercise after the pain fades – After a couple of weeks when the swelling has subsided and the pain has faded away, remove your arm sling for short periods and carefully move your arm in all different directions. Don’t aggravate the metacarpal fractures /boxer’s fracture so that it hurts, but gently reintroduce movements to the involved joints and muscles. Start cautiously, maybe starting with light calisthenics and then progress to holding light weights (five-pound weights to start).
  • Practice stretching and strengthening exercises – of the fingers, elbow, and shoulder if your doctor recommends them.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for three to five weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)
  • Get a supportive arm sling – Due to their anatomical position, metacarpal fractures /boxer’s fracture can’t be cast like a broken limb can. Instead, a supportive arm sling or “figure-eight” splint is typically used for support and comfort, either immediately after the injury if it’s just a hairline fracture or following surgery, if it’s a complicated fracture. 
  • Get a referral to physical therapy – Once you’ve recovered and able to remove your arm sling splint for good, you’ll likely notice that the muscles surrounding your metacarpal fractures /boxer’s fracture look smaller and feel weaker. That’s because muscle tissue atrophies without movement. If this occurs, then you’ll need to get a referral for some physical rehabilitation. Rehab can start once you are cleared by your orthopedist, are pain-free, and can perform all the basic arm and phalanges movements. A physiotherapist or athletic trainer can show you specific rehabilitation exercises and stretches to restore your muscle strength, joint movements, and flexibility
  • Taping the hand – as a type of soft splint, with the pinky and ring finger, taped together to help in healing correction of the dislocated bone, which may be done with anesthesia.

Rest Your Hand

Once you’re discharged from the hospital in an arm sling, your top priority is to rest your hand and not further inflame the injury. Of course, the arm sling not only provides support, but it also restricts movement, which is why you should keep it on even during sleep. Avoiding the temptation to move your hand and arm will help the bone mend quicker and the pain fades away sooner.
  • Depending on what you do for a living and if the injury is to your dominant side, you may need to take a couple of weeks off work to recuperate.
  • Healing takes between four to six weeks in younger people and up to 12 weeks in the elderly, but it depends on the severity of the radial and phalangeal fractures 
  • Athletes in good health are typically able to resume their sporting activities within two months of breaking they’re depending on the severity of the break and the specific sport.
  • Sleeping on your back (with the sling on) is necessary to keep the pressure off your shoulder and prevent stress.

Eat Nutritiously During Your Recovery

All bones and tissues in the body need certain nutrients in order to heal properly and in a timely manner. Eating a nutritious and balanced diet that includes lots of minerals and vitamins is proven to help heal broken bones of all types, including. Therefore, focus on eating lots of fresh produce (fruits and veggies), whole grains, lean meats, and fish to give your body the building blocks needed to properly repair your. In addition, drink plenty of purified water, milk, and other dairy-based beverages to augment what you eat.

  • Broken bones need ample minerals (calcium, phosphorus, magnesium, boron) and protein to become strong and healthy again.
  • Excellent sources of minerals/protein include dairy products, tofu, beans, broccoli, nuts and seeds, sardines, and salmon.
  • Important vitamins that are needed for bone healing include vitamin C (needed to make collagen), vitamin D (crucial for mineral absorption), and vitamin K (binds calcium to bones and triggers collagen formation).
  • Conversely, don’t consume food or drink that is known to impair bone/tissue healing, such as alcoholic beverages, sodas, most fast food items, and foods made with lots of refined sugars and preservatives.

Medication

The following medications may be considered doctor to relieve acute and immediate pain

The appropriate treatment for a Boxer’s fracture on the initial presentation varies based on whether the fracture is open or closed, the degree of angulation, rotation, and other concomitant injuries. Due to the risk of infection from “fight bite,” even very small wounds should be thoroughly irrigated, and there should be a low threshold for antibiotic treatment.

Surgery

Closed Reduction

Closed reduction is required for a Boxer’s fracture with significant angulation greater than 30 degrees.

  • Analgesia Options – for the procedure include a hematoma block or an ulnar nerve block. Younger children or very anxious patients may require procedural sedation, but this procedure typically is tolerated well without sedation.
  • A closed reduction of a Boxer’s fracture – is accomplished by using the “90-90 method.” The MCP, DIP, and PIP joints should all be flexed to 90 degrees. The clinician should then apply volar pressure over the dorsal aspect of the fracture site while applying pressure axially to the flexed PIP joint. This axial pressure to the PIP applies dorsal force to the distal fracture fragment. The clinician should be able to feel the reduction when it has been achieved. The injury should be immobilized with an ulnar gutter splint, and post-reduction films should be taken to assess for adequate reduction . The fifth metacarpal neck can tolerate angulation of up to 50-60 degrees and management may be continued non-operatively if remains within acceptable tolerances.
  • Surgical Referral – Surgical referral is indicated for fractures that are open, severely comminuted, associated with neurovascular injury, and for fractures with any malrotation. Surgical referral is also appropriate for fractures with significant angulation if the initial provider is unsuccessful in achieving adequate reduction and alignment outside acceptable parameters.  Surgical options include open reduction internal fixation or closed reduction percutaneous pinning.

Boxer’s Fracture Treatment Self-Care at Home

Home care for boxer’s fractures can be divided into care prior to seeing a doctor and care after a diagnosis of a boxer’s fracture is made.

  • The immediate goals of caring for an injured hand are to minimize pain and swelling, minimize the risk of infection of any open cuts, and to prevent further injury caused by an unstable fracture.
  • The best approach to reduce pain and swelling is to apply an ice pack to the injured area. If ice is not available, placing a towel soaked in cold water on the injured hand will work. Elevating the injured hand will also help reduce swelling.
  • An open cut sustained at the time of injury suggests an open fracture-a type of broken bone that is at increased risk for infection and poor healing. All cuts should be washed with soap and water and then covered with a clean bandage immediately to reduce the risk of infection.
  • A key technique to prevent further injury from a fracture is to immobilize the injured hand. This is often best accomplished by holding the injured hand in the uninjured hand. In addition, take care not to use the injured hand to lift objects or perform any task that would place stress on it. Using a broken hand that is not properly immobilized can cause damage to surrounding muscles, blood vessels, tendons, ligaments, and nerves.
  • Home care after the diagnosis of the boxer’s fracture is based on how the doctor treated the hand. Home care includes pain management, cast or splint care, and monitoring for signs of infection.
  • Bones, like many other parts of the body, contain nerve fibers that transmit the sensation of pain. Pain from broken bones is caused by swelling due to injury of the tissues around the fracture site, or by the broken bone moving against the nerve fibers. Pain should lessen once a broken bone is immobilized and movement is prevented. Some degree of pain may still persist. When a doctor writes a prescription for pain medication, it is important to take the medication as prescribed. This will help alleviate pain and will minimize the risk of any unwanted side effects from the medication.
  • Splinting or casting commonly is performed on all boxer’s fractures that do not require immediate surgery. All splints and casts should be kept dry in order to maintain their strength. A complication that can be seen with this procedure is the cast becoming too tight from the swelling of the fracture. When this happens, you may feel pain under the cast or splint. Another sign is numbness or tingling in the fingers on the casted hand. In addition, the finger may become cool to the touch. When this occurs, call your doctor or report to a hospital’s emergency department immediately for evaluation.
  • Infection can occur at an open cut. Wounds should be kept clean and covered until healing is complete. If stitches are used to close a cut, the doctor will provide additional instructions on how to care for the stitches, and when they should be removed. It is important to follow these directions carefully to minimize the risk of infection. Monitor any cuts for signs of infection. Warning signs of infection include redness, red streaking away from the cut, warmth, or swelling around the site of the cut. Pus may also drain from the wound. Any of these signs require immediate evaluation.

Next Steps

A person with a boxer’s fracture frequently is advised to follow-up with a bone specialist (orthopedic surgeon) or a hand specialist to ensure that the broken bone mends properly. The hand specialist may be either an orthopedic surgeon or a plastic surgeon who specializes in hand injuries.

  • Follow-up should occur within 1 week of the initial injury if there is not a critical amount of angulation. If angulation of the fracture exceeds acceptable levels, follow-up should occur sooner.
  • If a plaster splint is placed in your doctor’s office, or in the emergency department, and you develop increased pain or numbness in your fingers, or if your fingers become cold and blue, then loosen the splint, notify your doctor, and return to the emergency department immediately.

Follow-Up

Boxer’s fractures should be sent for repeat radiographs within one week to assess alignment.

  • Radiographs should be obtained every two weeks following, until clinical and radiographic healing are present, typically between four to six weeks. Even with the adequate reduction, some cosmetic deformity may persist, with loss of the normal knuckle contour.
  • After a short period of immobilization, the passive and active range of motion exercises should be performed to alleviate stiffness of the MCP and PIP joints. Literature supports the early mobilization of these injuries rather than prolonged immobilization. If any loss of function persists after several weeks of these exercises, referral to occupational therapy is warranted.

Complications

Unfortunately, irrespective of chosen treatment modality, metacarpal fractures have complications associated with them, and treating those is essential to achieve good outcomes. Scope for complications is greater with open injuries and those with a soft tissue damage component. The greater the damage to surrounding soft tissues, the poorer the outcome tends to be, and the incidence of complications increases. Conversely, in young and healthy patients, complications are less common.

 Metacarpal fracture complications include:

  • Compartment syndrome – Severe trauma and/or soft tissue injury may result in compartment syndrome of the hand whether or not the injury presents in a closed (as opposed to open) fashion.  Although relatively rare compared to the lower extremities, acute compartment syndrome of the hand should be ruled out in all clinical presentations associated with significant hand soft tissue swelling/deformity.
  • Stiffness – Stiffness is common and often coexists with tendon adhesions. Longer immobilization periods, as well as periosteal stripping and neurovascular injuries, increase the risk of it. Prevention includes using low profile plates, splinting in functional positions, pain control, and early mobilization. In severe cases, tenolysis might be needed to improve the outcome.
  • Malunion – Malunion is the most common complication and results in a deformity, which can be problematic both functionally and cosmetically. Extensors are more likely to be affected than flexors in metacarpal fractures because of bone shortening. Surgery is required to treat malunion if indicated in a particular patient.
  • Non-union – Non-union is a lack of bone healing four months after the injury. It is rare and commonly associated with nerve injury, infection, bone loss, and revascularizing methods of fixation. Diagnosis is made clinically with the help of radiological evidence. It can result from inadequate immobilization, failed fixation, bone loss, and poor tissue approximation. The treatment is a stable fixation with or without bone grafting. Occasionally tenolysis is also required to improve function.
  • Tendon rupture – Plate fixation runs a risk of tendon irritation and in worst cases, rupture. If plates are used, periosteal closure should be done whenever possible to reduce this risk.  Healthcare providers should evaluate extensor tendon function following operative and nonoperative management of these injuries.
  • Infection (including osteomyelitis) – Although metacarpal osteomyelitis is rare, it requires removal of all metalwork, taking cultures from tissues, and thorough debridement. Over 50% of such infections ends in amputation.
  • Cold intolerance – Cold intolerance is a known complication of hand trauma and may affect over a third of patients.
  • Chronic pain – Intra-articular fractures have a slightly worse prognosis, with 40% of patients with metacarpal base fractures reporting chronic pain irrespective of management method. Arthrodesis can be performed to manage this if severe.
  • Instability – Long-term instability is a risk, particularly in thumb base fractures.

References

ByRx Harun

Boxer’s Fracture – Causes, Symptoms, Treatment

Boxer’s fracture/Metacarpal fractures account for 40% of all hand fractures.  A Boxer’s fracture is a fracture of the fifth metacarpal neck, named for the classic mechanism of injury in which direct trauma is applied to a clenched fist.  This represents 10% of all hand fractures. Treatment for a Boxer’s fracture varies based on whether the fracture is open or closed, characteristics of the fracture including the degree of angulation, shortening, and rotation, and other concomitant injuries. Immobilization with an ulnar gutter splint may be the definitive treatment for closed, non-displaced fractures without angulation or rotation, while open fractures, significantly angulated or malrotated fractures or those involving injury to neurovascular structures may require operative fixation.

Pathophysiology

The fifth metacarpal bone is one of the five metacarpal bones of the hand. The fifth metacarpal is associated with the fifth digit. The metacarpal bone consists of a head (distally located), neck, body, and base (proximally located). Axial load via direct trauma to a clenched fist transfers energy to the metacarpal bone, causing fractures most commonly at the neck, and typically resulting in apex dorsal angulation due in part to the forces exerted by the pull of the interosseous muscles. The interosseous muscles, responsible for adduction and abduction of the fingers, originate from the metacarpal shafts and insert onto proximal phalanges. The collateral ligaments also join the metacarpal bones to the proximal phalanges and must be taken into consideration during splinting to minimize the risk of loss of motion due to shortening of the ligaments. The ligaments are taut in flexion, and more slack in extension, therefore the MCP joints should be splinted in flexion to prevent shortening (intrinsic plus positioning). The arteries and nerves supplying the fingers are adjacent to the metacarpal bones and can be injured in severely displaced Boxer’s fractures, requiring surgical intervention.

Boxer’s Fracture

Causes Of Boxer’s Fracture

The most common mechanism of injury for Boxer’s fracture is punching, e.g., the axial pressure applied to the metacarpal bone when the fist is in a clenched position. Direct trauma to the dorsum of the hand may also cause a fracture of the fifth metacarpal neck. Unlike many other hand and wrist fractures, a Boxer’s fracture typically does not occur with a fall onto an outstretched hand.

Boxer’s Fracture

  • Injury to the phalanges – occurs with direct, blunt trauma, penetrating trauma, and crush injuries.
  • Sudden forceful  fall down
  • Road traffic accident
  • Falls – Falling onto an outstretched hand is one of the most common causes of broken and fractures.
  • Sports injuries – Many fractures occur during contact sports or sports in which you might fall onto an outstretched hand — such as in-line skating or snowboarding.
  • Motor vehicle crashes – Motor vehicle crashes can cause wrist bones to break, sometimes into many pieces, and often require surgical repair.
  • Have osteoporosis –  a disease that weakens your bones
  • Eave low muscle mass or poor muscle strength – or lack agility and have poor balance (these conditions make you more likely to fall)
  • Walk or do other activities in the snow or on the ice – or do activities that require a lot of forwarding momenta, such as in-line skating and skiing
  • Wave an inadequate intake of calcium or vitamin D
  • Football or soccer, especially on artificial turf
  • Rugby
  • Horseback riding
  • Hockey
  • Skiing
  • Snowboarding
  • In-line skating
  • Jumping on a trampoline

Symptoms of Boxer’s Fracture

The symptoms are pain and tenderness in the specific location of the hand, which corresponds to the metacarpal bone around the knuckle.

  • There will be swelling of the hand along with discoloration or bruising in the affected area. Abrasions or lacerations of the hand are also likely to occur. The respective finger may be misaligned, and the movement of that finger may be limited and painful.
  • Painful bruising and swelling of the back and front of the hand
  • The pain of the back of the hand in the area of the fractured 5th metacarpal
  • The bent, claw-like pinky finger that looks out of alignment
  • Limited range of motion of the hand and of the 4th and 5th fingers
  • When a fracture occurs, there may be a snapping or popping sensation.
  • Tenderness near the base of the pinky finger
  • Inability or limited ability to move the pinky or ring finger
  • The knuckles of the affected finger appearing flat and no longer protruding as usual
  • Problems trying to grip with the injured hand
  • Numbness
  • Coldness in the hand

Boxer’s Fracture

Diagnosis of Fifth Metacarpal Fractures

History and Physical

Patients with Boxer’s fractures present with complaints of dorsal hand pain, swelling, and possible deformity in the setting of one of the mechanisms typically associated with this injury involving direct trauma to the hand.

Complete physical exam of a potential Boxer’s fracture should include an examination of the entire hand, comparison to the contralateral hand, with special attention to the following:

  • Skin – Closely inspect the skin for any breaks, especially near the metacarpal head, typically the point of impact. When a Boxer’s fracture is sustained by a blow to the face, the recipient’s tooth may cause a laceration or abrasion known as a “fight bite.” This may require operative irrigation and debridement.
  • Neurovascular exam – As with all suspected fractures, a neurovascular exam should test for sensation, motor function, and blood flow distal to the injury.
  • Angulation – Boxer’s fractures are typically associated with apex dorsal angulation, thereby resulting in depression of the MCP joint and loss of the normal knuckle contour. With significantly angulated fractures, “pseudo-clawing” may be observed due to damage to the extensor apparatus; pseudo-clawing is a hyperextension of the MCP joint and flexion at the PIP joint. The degree of angulation is determined using plain films.
  • Rotational alignment – Any degree of malrotation warrants referral to a hand surgeon and therefore assessment of rotational alignment is a crucial component of the physical exam. Alignment can be assessed by examining the hand with the MCP and PCP joints in flexion, and DIP joints extended. If lines are drawn along the digits and extended distally, normally aligned digits will show the convergence of these lines. If the line extended from the fifth finger does not converge towards the others, suspect malrotation.
  • Malrotation – can also be detected by examining the hand with the MCPs flexed, and PCPs and DIPs extended. The fingernails should be in line along a single plane.

Imaging

  • Plain radiographs – are the standard of care to diagnose Boxer’s fractures and determine a degree of angulation. Anteroposterior, lateral, and oblique views should be obtained. The lateral view should be used to measure the degree of angulation of the shaft of the metacarpal as compared to the mid-point of the fracture fragment. Normal angulation of the metacarpal head to the neck is 15 degrees, so the angulation of the fracture should be measured as that more than the baseline of 15 degrees.
  • Ultrasound – Recent literature suggests that bedside ultrasound may also be used to make an initial diagnosis of a Boxer’s fracture.
  • CT Scan – is generally not used for the diagnosis of metacarpal fractures; however occult fractures may be detected via CT in patients for whom there is a high degree of clinical suspicion for fracture and negative plain radiographs.

Boxer’s Fracture

Treatment of Fifth Metacarpal Fractures

Non-Surgical

Treatment available can be broadly

  • Get medical help immediately – If you fall on an outstretched arm, get into a car accident or are hit while playing a sport and feel intense pain in your shoulder area, then get medical care immediately.  cause significant pain in the front part of your shoulder, closer to the base of your hand. You’ll innately know that something is seriously wrong because you won’t be able to lift your arm up above the heart level. Cleaning and treating any wounds on the skin of the injured hand.
  • Apply ice to your fractured area immediately – Before going to the hospital metacarpal fractures /boxer’s fracture(regardless if you had surgery or not), you should apply a bag of crushed ice (or something cold) to your injured in order to reduce the swelling and numb the pain. Ice therapy is effective for acute (recent) injuries that involve swelling because it reduces blood flow by constricting local blood vessels. Apply the crushed for 15 minutes three to five times daily until the soreness and inflammation eventually fades away
  • Immobilization Alone – For a Boxer’s fracture that is closed, not angulated, and not malrotated or otherwise displaced, splinting is used for initial immobilization. A Boxer’s fracture should be immobilized with an ulnar gutter splint. Alternatively, a pre-made Galveston splint or a custom orthosis may be used. The hand should be positioned in the intrinsic plus position for splinting mild wrist extension, 70 to 90 degrees of flexion at MCP joint, and slight flexion at the DIP and PIP joints. Flexion of these joints is important to prevent shortening of the collateral ligaments and subsequent loss of range of motion and functional impairment.
  • Lightly exercise after the pain fades – After a couple of weeks when the swelling has subsided and the pain has faded away, remove your arm sling for short periods and carefully move your arm in all different directions. Don’t aggravate the metacarpal fractures /boxer’s fracture so that it hurts, but gently reintroduce movements to the involved joints and muscles. Start cautiously, maybe starting with light calisthenics and then progress to holding light weights (five-pound weights to start).
  • Practice stretching and strengthening exercises – of the fingers, elbow, and shoulder if your doctor recommends them.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for three to five weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)
  • Get a supportive arm sling – Due to their anatomical position, metacarpal fractures /boxer’s fracture can’t be cast like a broken limb can. Instead, a supportive arm sling or “figure-eight” splint is typically used for support and comfort, either immediately after the injury if it’s just a hairline fracture or following surgery, if it’s a complicated fracture. 
  • Get a referral to physical therapy – Once you’ve recovered and able to remove your arm sling splint for good, you’ll likely notice that the muscles surrounding your metacarpal fractures /boxer’s fracture look smaller and feel weaker. That’s because muscle tissue atrophies without movement. If this occurs, then you’ll need to get a referral for some physical rehabilitation. Rehab can start once you are cleared by your orthopedist, are pain-free, and can perform all the basic arm and phalanges movements. A physiotherapist or athletic trainer can show you specific rehabilitation exercises and stretches to restore your muscle strength, joint movements, and flexibility
  • Taping the hand – as a type of soft splint, with the pinky and ring finger, taped together to help in healing correction of the dislocated bone, which may be done with anesthesia.

Rest Your Hand

Once you’re discharged from the hospital in an arm sling, your top priority is to rest your hand and not further inflame the injury. Of course, the arm sling not only provides support, but it also restricts movement, which is why you should keep it on even during sleep. Avoiding the temptation to move your hand and arm will help the bone mend quicker and the pain fades away sooner.
  • Depending on what you do for a living and if the injury is to your dominant side, you may need to take a couple of weeks off work to recuperate.
  • Healing takes between four to six weeks in younger people and up to 12 weeks in the elderly, but it depends on the severity of the radial and phalangeal fractures 
  • Athletes in good health are typically able to resume their sporting activities within two months of breaking they’re depending on the severity of the break and the specific sport.
  • Sleeping on your back (with the sling on) is necessary to keep the pressure off your shoulder and prevent stress.

Eat Nutritiously During Your Recovery

All bones and tissues in the body need certain nutrients in order to heal properly and in a timely manner. Eating a nutritious and balanced diet that includes lots of minerals and vitamins is proven to help heal broken bones of all types, including. Therefore, focus on eating lots of fresh produce (fruits and veggies), whole grains, lean meats, and fish to give your body the building blocks needed to properly repair your. In addition, drink plenty of purified water, milk, and other dairy-based beverages to augment what you eat.

  • Broken bones need ample minerals (calcium, phosphorus, magnesium, boron) and protein to become strong and healthy again.
  • Excellent sources of minerals/protein include dairy products, tofu, beans, broccoli, nuts and seeds, sardines, and salmon.
  • Important vitamins that are needed for bone healing include vitamin C (needed to make collagen), vitamin D (crucial for mineral absorption), and vitamin K (binds calcium to bones and triggers collagen formation).
  • Conversely, don’t consume food or drink that is known to impair bone/tissue healing, such as alcoholic beverages, sodas, most fast food items, and foods made with lots of refined sugars and preservatives.

Medication

The following medications may be considered doctor to relieve acute and immediate pain

The appropriate treatment for a Boxer’s fracture on the initial presentation varies based on whether the fracture is open or closed, the degree of angulation, rotation, and other concomitant injuries. Due to the risk of infection from “fight bite,” even very small wounds should be thoroughly irrigated, and there should be a low threshold for antibiotic treatment.

Surgery

Closed Reduction

Closed reduction is required for a Boxer’s fracture with significant angulation greater than 30 degrees.

  • Analgesia Options – for the procedure include a hematoma block or an ulnar nerve block. Younger children or very anxious patients may require procedural sedation, but this procedure typically is tolerated well without sedation.
  • A closed reduction of a Boxer’s fracture – is accomplished by using the “90-90 method.” The MCP, DIP, and PIP joints should all be flexed to 90 degrees. The clinician should then apply volar pressure over the dorsal aspect of the fracture site while applying pressure axially to the flexed PIP joint. This axial pressure to the PIP applies dorsal force to the distal fracture fragment. The clinician should be able to feel the reduction when it has been achieved. The injury should be immobilized with an ulnar gutter splint, and post-reduction films should be taken to assess for adequate reduction . The fifth metacarpal neck can tolerate angulation of up to 50-60 degrees and management may be continued non-operatively if remains within acceptable tolerances.
  • Surgical Referral – Surgical referral is indicated for fractures that are open, severely comminuted, associated with neurovascular injury, and for fractures with any malrotation. Surgical referral is also appropriate for fractures with significant angulation if the initial provider is unsuccessful in achieving adequate reduction and alignment outside acceptable parameters.  Surgical options include open reduction internal fixation or closed reduction percutaneous pinning.

Boxer’s Fracture Treatment Self-Care at Home

Home care for boxer’s fractures can be divided into care prior to seeing a doctor and care after a diagnosis of a boxer’s fracture is made.

  • The immediate goals of caring for an injured hand are to minimize pain and swelling, minimize the risk of infection of any open cuts, and to prevent further injury caused by an unstable fracture.
  • The best approach to reduce pain and swelling is to apply an ice pack to the injured area. If ice is not available, placing a towel soaked in cold water on the injured hand will work. Elevating the injured hand will also help reduce swelling.
  • An open cut sustained at the time of injury suggests an open fracture-a type of broken bone that is at increased risk for infection and poor healing. All cuts should be washed with soap and water and then covered with a clean bandage immediately to reduce the risk of infection.
  • A key technique to prevent further injury from a fracture is to immobilize the injured hand. This is often best accomplished by holding the injured hand in the uninjured hand. In addition, take care not to use the injured hand to lift objects or perform any task that would place stress on it. Using a broken hand that is not properly immobilized can cause damage to surrounding muscles, blood vessels, tendons, ligaments, and nerves.
  • Home care after the diagnosis of the boxer’s fracture is based on how the doctor treated the hand. Home care includes pain management, cast or splint care, and monitoring for signs of infection.
  • Bones, like many other parts of the body, contain nerve fibers that transmit the sensation of pain. Pain from broken bones is caused by swelling due to injury of the tissues around the fracture site, or by the broken bone moving against the nerve fibers. Pain should lessen once a broken bone is immobilized and movement is prevented. Some degree of pain may still persist. When a doctor writes a prescription for pain medication, it is important to take the medication as prescribed. This will help alleviate pain and will minimize the risk of any unwanted side effects from the medication.
  • Splinting or casting commonly is performed on all boxer’s fractures that do not require immediate surgery. All splints and casts should be kept dry in order to maintain their strength. A complication that can be seen with this procedure is the cast becoming too tight from the swelling of the fracture. When this happens, you may feel pain under the cast or splint. Another sign is numbness or tingling in the fingers on the casted hand. In addition, the finger may become cool to the touch. When this occurs, call your doctor or report to a hospital’s emergency department immediately for evaluation.
  • Infection can occur at an open cut. Wounds should be kept clean and covered until healing is complete. If stitches are used to close a cut, the doctor will provide additional instructions on how to care for the stitches, and when they should be removed. It is important to follow these directions carefully to minimize the risk of infection. Monitor any cuts for signs of infection. Warning signs of infection include redness, red streaking away from the cut, warmth, or swelling around the site of the cut. Pus may also drain from the wound. Any of these signs require immediate evaluation.

Next Steps

A person with a boxer’s fracture frequently is advised to follow-up with a bone specialist (orthopedic surgeon) or a hand specialist to ensure that the broken bone mends properly. The hand specialist may be either an orthopedic surgeon or a plastic surgeon who specializes in hand injuries.

  • Follow-up should occur within 1 week of the initial injury if there is not a critical amount of angulation. If angulation of the fracture exceeds acceptable levels, follow-up should occur sooner.
  • If a plaster splint is placed in your doctor’s office, or in the emergency department, and you develop increased pain or numbness in your fingers, or if your fingers become cold and blue, then loosen the splint, notify your doctor, and return to the emergency department immediately.

Follow-Up

Boxer’s fractures should be sent for repeat radiographs within one week to assess alignment.

  • Radiographs should be obtained every two weeks following, until clinical and radiographic healing are present, typically between four to six weeks. Even with the adequate reduction, some cosmetic deformity may persist, with loss of the normal knuckle contour.
  • After a short period of immobilization, the passive and active range of motion exercises should be performed to alleviate stiffness of the MCP and PIP joints. Literature supports the early mobilization of these injuries rather than prolonged immobilization. If any loss of function persists after several weeks of these exercises, referral to occupational therapy is warranted.

Complications

Unfortunately, irrespective of chosen treatment modality, metacarpal fractures have complications associated with them, and treating those is essential to achieve good outcomes. Scope for complications is greater with open injuries and those with a soft tissue damage component. The greater the damage to surrounding soft tissues, the poorer the outcome tends to be, and the incidence of complications increases. Conversely, in young and healthy patients, complications are less common.

 Metacarpal fracture complications include:

  • Compartment syndrome – Severe trauma and/or soft tissue injury may result in compartment syndrome of the hand whether or not the injury presents in a closed (as opposed to open) fashion.  Although relatively rare compared to the lower extremities, acute compartment syndrome of the hand should be ruled out in all clinical presentations associated with significant hand soft tissue swelling/deformity.
  • Stiffness – Stiffness is common and often coexists with tendon adhesions. Longer immobilization periods, as well as periosteal stripping and neurovascular injuries, increase the risk of it. Prevention includes using low profile plates, splinting in functional positions, pain control, and early mobilization. In severe cases, tenolysis might be needed to improve the outcome.
  • Malunion – Malunion is the most common complication and results in a deformity, which can be problematic both functionally and cosmetically. Extensors are more likely to be affected than flexors in metacarpal fractures because of bone shortening. Surgery is required to treat malunion if indicated in a particular patient.
  • Non-union – Non-union is a lack of bone healing four months after the injury. It is rare and commonly associated with nerve injury, infection, bone loss, and revascularizing methods of fixation. Diagnosis is made clinically with the help of radiological evidence. It can result from inadequate immobilization, failed fixation, bone loss, and poor tissue approximation. The treatment is a stable fixation with or without bone grafting. Occasionally tenolysis is also required to improve function.
  • Tendon rupture – Plate fixation runs a risk of tendon irritation and in worst cases, rupture. If plates are used, periosteal closure should be done whenever possible to reduce this risk.  Healthcare providers should evaluate extensor tendon function following operative and nonoperative management of these injuries.
  • Infection (including osteomyelitis) – Although metacarpal osteomyelitis is rare, it requires removal of all metalwork, taking cultures from tissues, and thorough debridement. Over 50% of such infections ends in amputation.
  • Cold intolerance – Cold intolerance is a known complication of hand trauma and may affect over a third of patients.
  • Chronic pain – Intra-articular fractures have a slightly worse prognosis, with 40% of patients with metacarpal base fractures reporting chronic pain irrespective of management method. Arthrodesis can be performed to manage this if severe.
  • Instability – Long-term instability is a risk, particularly in thumb base fractures.

References

ByRx Harun

Fifth Metacarpal Fractures – Causes, Symptoms, Treatment

Fifth Metacarpal Fractures/Metacarpal fractures account for 40% of all hand fractures.  A Boxer’s fracture is a fracture of the fifth metacarpal neck, named for the classic mechanism of injury in which direct trauma is applied to a clenched fist.  This represents 10% of all hand fractures. Treatment for a Boxer’s fracture varies based on whether the fracture is open or closed, characteristics of the fracture including the degree of angulation, shortening, and rotation, and other concomitant injuries. Immobilization with an ulnar gutter splint may be the definitive treatment for closed, non-displaced fractures without angulation or rotation, while open fractures, significantly angulated or malrotated fractures or those involving injury to neurovascular structures may require operative fixation.

Pathophysiology

The fifth metacarpal bone is one of the five metacarpal bones of the hand. The fifth metacarpal is associated with the fifth digit. The metacarpal bone consists of a head (distally located), neck, body, and base (proximally located). Axial load via direct trauma to a clenched fist transfers energy to the metacarpal bone, causing fractures most commonly at the neck, and typically resulting in apex dorsal angulation due in part to the forces exerted by the pull of the interosseous muscles. The interosseous muscles, responsible for adduction and abduction of the fingers, originate from the metacarpal shafts and insert onto proximal phalanges. The collateral ligaments also join the metacarpal bones to the proximal phalanges and must be taken into consideration during splinting to minimize the risk of loss of motion due to shortening of the ligaments. The ligaments are taut in flexion, and more slack in extension, therefore the MCP joints should be splinted in flexion to prevent shortening (intrinsic plus positioning). The arteries and nerves supplying the fingers are adjacent to the metacarpal bones and can be injured in severely displaced Boxer’s fractures, requiring surgical intervention.

Metacarpal fractures

Causes Of Fifth Metacarpal Fractures

The most common mechanism of injury for Boxer’s fracture is punching, e.g., the axial pressure applied to the metacarpal bone when the fist is in a clenched position. Direct trauma to the dorsum of the hand may also cause a fracture of the fifth metacarpal neck. Unlike many other hand and wrist fractures, a Boxer’s fracture typically does not occur with a fall onto an outstretched hand.

Metacarpal fractures

  • Injury to the phalanges – occurs with direct, blunt trauma, penetrating trauma, and crush injuries.
  • Sudden forceful  fall down
  • Road traffic accident
  • Falls – Falling onto an outstretched hand is one of the most common causes of broken and fractures.
  • Sports injuries – Many fractures occur during contact sports or sports in which you might fall onto an outstretched hand — such as in-line skating or snowboarding.
  • Motor vehicle crashes – Motor vehicle crashes can cause wrist bones to break, sometimes into many pieces, and often require surgical repair.
  • Have osteoporosis –  a disease that weakens your bones
  • Eave low muscle mass or poor muscle strength – or lack agility and have poor balance (these conditions make you more likely to fall)
  • Walk or do other activities in the snow or on the ice – or do activities that require a lot of forwarding momenta, such as in-line skating and skiing
  • Wave an inadequate intake of calcium or vitamin D
  • Football or soccer, especially on artificial turf
  • Rugby
  • Horseback riding
  • Hockey
  • Skiing
  • Snowboarding
  • In-line skating
  • Jumping on a trampoline

Symptoms of Fifth Metacarpal Fractures

The symptoms are pain and tenderness in the specific location of the hand, which corresponds to the metacarpal bone around the knuckle.

  • There will be swelling of the hand along with discoloration or bruising in the affected area. Abrasions or lacerations of the hand are also likely to occur. The respective finger may be misaligned, and the movement of that finger may be limited and painful.
  • Painful bruising and swelling of the back and front of the hand
  • The pain of the back of the hand in the area of the fractured 5th metacarpal
  • The bent, claw-like pinky finger that looks out of alignment
  • Limited range of motion of the hand and of the 4th and 5th fingers
  • When a fracture occurs, there may be a snapping or popping sensation.
  • Tenderness near the base of the pinky finger
  • Inability or limited ability to move the pinky or ring finger
  • The knuckles of the affected finger appearing flat and no longer protruding as usual
  • Problems trying to grip with the injured hand
  • Numbness
  • Coldness in the hand

Metacarpal fractures

Diagnosis of Fifth Metacarpal Fractures

History and Physical

Patients with Boxer’s fractures present with complaints of dorsal hand pain, swelling, and possible deformity in the setting of one of the mechanisms typically associated with this injury involving direct trauma to the hand.

Complete physical exam of a potential Boxer’s fracture should include an examination of the entire hand, comparison to the contralateral hand, with special attention to the following:

  • Skin – Closely inspect the skin for any breaks, especially near the metacarpal head, typically the point of impact. When a Boxer’s fracture is sustained by a blow to the face, the recipient’s tooth may cause a laceration or abrasion known as a “fight bite.” This may require operative irrigation and debridement.
  • Neurovascular exam – As with all suspected fractures, a neurovascular exam should test for sensation, motor function, and blood flow distal to the injury.
  • Angulation – Boxer’s fractures are typically associated with apex dorsal angulation, thereby resulting in depression of the MCP joint and loss of the normal knuckle contour. With significantly angulated fractures, “pseudo-clawing” may be observed due to damage to the extensor apparatus; pseudo-clawing is a hyperextension of the MCP joint and flexion at the PIP joint. The degree of angulation is determined using plain films.
  • Rotational alignment – Any degree of malrotation warrants referral to a hand surgeon and therefore assessment of rotational alignment is a crucial component of the physical exam. Alignment can be assessed by examining the hand with the MCP and PCP joints in flexion, and DIP joints extended. If lines are drawn along the digits and extended distally, normally aligned digits will show the convergence of these lines. If the line extended from the fifth finger does not converge towards the others, suspect malrotation.
  • Malrotation – can also be detected by examining the hand with the MCPs flexed, and PCPs and DIPs extended. The fingernails should be in line along a single plane.

Imaging

  • Plain radiographs – are the standard of care to diagnose Boxer’s fractures and determine a degree of angulation. Anteroposterior, lateral, and oblique views should be obtained. The lateral view should be used to measure the degree of angulation of the shaft of the metacarpal as compared to the mid-point of the fracture fragment. Normal angulation of the metacarpal head to the neck is 15 degrees, so the angulation of the fracture should be measured as that more than the baseline of 15 degrees.
  • Ultrasound – Recent literature suggests that bedside ultrasound may also be used to make an initial diagnosis of a Boxer’s fracture.
  • CT Scan – is generally not used for the diagnosis of metacarpal fractures; however occult fractures may be detected via CT in patients for whom there is a high degree of clinical suspicion for fracture and negative plain radiographs.

Metacarpal fractures

Treatment of Fifth Metacarpal Fractures

Non-Surgical

Treatment available can be broadly

  • Get medical help immediately – If you fall on an outstretched arm, get into a car accident or are hit while playing a sport and feel intense pain in your shoulder area, then get medical care immediately.  cause significant pain in the front part of your shoulder, closer to the base of your hand. You’ll innately know that something is seriously wrong because you won’t be able to lift your arm up above the heart level. Cleaning and treating any wounds on the skin of the injured hand.
  • Apply ice to your fractured area immediately – Before going to the hospital metacarpal fractures /boxer’s fracture(regardless if you had surgery or not), you should apply a bag of crushed ice (or something cold) to your injured in order to reduce the swelling and numb the pain. Ice therapy is effective for acute (recent) injuries that involve swelling because it reduces blood flow by constricting local blood vessels. Apply the crushed for 15 minutes three to five times daily until the soreness and inflammation eventually fades away
  • Immobilization Alone – For a Boxer’s fracture that is closed, not angulated, and not malrotated or otherwise displaced, splinting is used for initial immobilization. A Boxer’s fracture should be immobilized with an ulnar gutter splint. Alternatively, a pre-made Galveston splint or a custom orthosis may be used. The hand should be positioned in the intrinsic plus position for splinting mild wrist extension, 70 to 90 degrees of flexion at MCP joint, and slight flexion at the DIP and PIP joints. Flexion of these joints is important to prevent shortening of the collateral ligaments and subsequent loss of range of motion and functional impairment.
  • Lightly exercise after the pain fades – After a couple of weeks when the swelling has subsided and the pain has faded away, remove your arm sling for short periods and carefully move your arm in all different directions. Don’t aggravate the metacarpal fractures /boxer’s fracture so that it hurts, but gently reintroduce movements to the involved joints and muscles. Start cautiously, maybe starting with light calisthenics and then progress to holding light weights (five-pound weights to start).
  • Practice stretching and strengthening exercises – of the fingers, elbow, and shoulder if your doctor recommends them.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for three to five weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)
  • Get a supportive arm sling – Due to their anatomical position, metacarpal fractures /boxer’s fracture can’t be cast like a broken limb can. Instead, a supportive arm sling or “figure-eight” splint is typically used for support and comfort, either immediately after the injury if it’s just a hairline fracture or following surgery, if it’s a complicated fracture. 
  • Get a referral to physical therapy – Once you’ve recovered and able to remove your arm sling splint for good, you’ll likely notice that the muscles surrounding your metacarpal fractures /boxer’s fracture look smaller and feel weaker. That’s because muscle tissue atrophies without movement. If this occurs, then you’ll need to get a referral for some physical rehabilitation. Rehab can start once you are cleared by your orthopedist, are pain-free, and can perform all the basic arm and phalanges movements. A physiotherapist or athletic trainer can show you specific rehabilitation exercises and stretches to restore your muscle strength, joint movements, and flexibility
  • Taping the hand – as a type of soft splint, with the pinky and ring finger, taped together to help in healing correction of the dislocated bone, which may be done with anesthesia.

Rest Your Hand

Once you’re discharged from the hospital in an arm sling, your top priority is to rest your hand and not further inflame the injury. Of course, the arm sling not only provides support, but it also restricts movement, which is why you should keep it on even during sleep. Avoiding the temptation to move your hand and arm will help the bone mend quicker and the pain fades away sooner.
  • Depending on what you do for a living and if the injury is to your dominant side, you may need to take a couple of weeks off work to recuperate.
  • Healing takes between four to six weeks in younger people and up to 12 weeks in the elderly, but it depends on the severity of the radial and phalangeal fractures 
  • Athletes in good health are typically able to resume their sporting activities within two months of breaking they’re depending on the severity of the break and the specific sport.
  • Sleeping on your back (with the sling on) is necessary to keep the pressure off your shoulder and prevent stress.

Eat Nutritiously During Your Recovery

All bones and tissues in the body need certain nutrients in order to heal properly and in a timely manner. Eating a nutritious and balanced diet that includes lots of minerals and vitamins is proven to help heal broken bones of all types, including. Therefore, focus on eating lots of fresh produce (fruits and veggies), whole grains, lean meats, and fish to give your body the building blocks needed to properly repair your. In addition, drink plenty of purified water, milk, and other dairy-based beverages to augment what you eat.

  • Broken bones need ample minerals (calcium, phosphorus, magnesium, boron) and protein to become strong and healthy again.
  • Excellent sources of minerals/protein include dairy products, tofu, beans, broccoli, nuts and seeds, sardines, and salmon.
  • Important vitamins that are needed for bone healing include vitamin C (needed to make collagen), vitamin D (crucial for mineral absorption), and vitamin K (binds calcium to bones and triggers collagen formation).
  • Conversely, don’t consume food or drink that is known to impair bone/tissue healing, such as alcoholic beverages, sodas, most fast food items, and foods made with lots of refined sugars and preservatives.

Medication

The following medications may be considered doctor to relieve acute and immediate pain

The appropriate treatment for a Boxer’s fracture on the initial presentation varies based on whether the fracture is open or closed, the degree of angulation, rotation, and other concomitant injuries. Due to the risk of infection from “fight bite,” even very small wounds should be thoroughly irrigated, and there should be a low threshold for antibiotic treatment.

Surgery

Closed Reduction

Closed reduction is required for a Boxer’s fracture with significant angulation greater than 30 degrees.

  • Analgesia Options – for the procedure include a hematoma block or an ulnar nerve block. Younger children or very anxious patients may require procedural sedation, but this procedure typically is tolerated well without sedation.
  • A closed reduction of a Boxer’s fracture – is accomplished by using the “90-90 method.” The MCP, DIP, and PIP joints should all be flexed to 90 degrees. The clinician should then apply volar pressure over the dorsal aspect of the fracture site while applying pressure axially to the flexed PIP joint. This axial pressure to the PIP applies dorsal force to the distal fracture fragment. The clinician should be able to feel the reduction when it has been achieved. The injury should be immobilized with an ulnar gutter splint, and post-reduction films should be taken to assess for adequate reduction . The fifth metacarpal neck can tolerate angulation of up to 50-60 degrees and management may be continued non-operatively if remains within acceptable tolerances.
  • Surgical Referral – Surgical referral is indicated for fractures that are open, severely comminuted, associated with neurovascular injury, and for fractures with any malrotation. Surgical referral is also appropriate for fractures with significant angulation if the initial provider is unsuccessful in achieving adequate reduction and alignment outside acceptable parameters.  Surgical options include open reduction internal fixation or closed reduction percutaneous pinning.

Boxer’s Fracture Treatment Self-Care at Home

Home care for boxer’s fractures can be divided into care prior to seeing a doctor and care after a diagnosis of a boxer’s fracture is made.

  • The immediate goals of caring for an injured hand are to minimize pain and swelling, minimize the risk of infection of any open cuts, and to prevent further injury caused by an unstable fracture.
  • The best approach to reduce pain and swelling is to apply an ice pack to the injured area. If ice is not available, placing a towel soaked in cold water on the injured hand will work. Elevating the injured hand will also help reduce swelling.
  • An open cut sustained at the time of injury suggests an open fracture-a type of broken bone that is at increased risk for infection and poor healing. All cuts should be washed with soap and water and then covered with a clean bandage immediately to reduce the risk of infection.
  • A key technique to prevent further injury from a fracture is to immobilize the injured hand. This is often best accomplished by holding the injured hand in the uninjured hand. In addition, take care not to use the injured hand to lift objects or perform any task that would place stress on it. Using a broken hand that is not properly immobilized can cause damage to surrounding muscles, blood vessels, tendons, ligaments, and nerves.
  • Home care after the diagnosis of the boxer’s fracture is based on how the doctor treated the hand. Home care includes pain management, cast or splint care, and monitoring for signs of infection.
  • Bones, like many other parts of the body, contain nerve fibers that transmit the sensation of pain. Pain from broken bones is caused by swelling due to injury of the tissues around the fracture site, or by the broken bone moving against the nerve fibers. Pain should lessen once a broken bone is immobilized and movement is prevented. Some degree of pain may still persist. When a doctor writes a prescription for pain medication, it is important to take the medication as prescribed. This will help alleviate pain and will minimize the risk of any unwanted side effects from the medication.
  • Splinting or casting commonly is performed on all boxer’s fractures that do not require immediate surgery. All splints and casts should be kept dry in order to maintain their strength. A complication that can be seen with this procedure is the cast becoming too tight from the swelling of the fracture. When this happens, you may feel pain under the cast or splint. Another sign is numbness or tingling in the fingers on the casted hand. In addition, the finger may become cool to the touch. When this occurs, call your doctor or report to a hospital’s emergency department immediately for evaluation.
  • Infection can occur at an open cut. Wounds should be kept clean and covered until healing is complete. If stitches are used to close a cut, the doctor will provide additional instructions on how to care for the stitches, and when they should be removed. It is important to follow these directions carefully to minimize the risk of infection. Monitor any cuts for signs of infection. Warning signs of infection include redness, red streaking away from the cut, warmth, or swelling around the site of the cut. Pus may also drain from the wound. Any of these signs require immediate evaluation.

Next Steps

A person with a boxer’s fracture frequently is advised to follow-up with a bone specialist (orthopedic surgeon) or a hand specialist to ensure that the broken bone mends properly. The hand specialist may be either an orthopedic surgeon or a plastic surgeon who specializes in hand injuries.

  • Follow-up should occur within 1 week of the initial injury if there is not a critical amount of angulation. If angulation of the fracture exceeds acceptable levels, follow-up should occur sooner.
  • If a plaster splint is placed in your doctor’s office, or in the emergency department, and you develop increased pain or numbness in your fingers, or if your fingers become cold and blue, then loosen the splint, notify your doctor, and return to the emergency department immediately.

Follow-Up

Boxer’s fractures should be sent for repeat radiographs within one week to assess alignment.

  • Radiographs should be obtained every two weeks following, until clinical and radiographic healing are present, typically between four to six weeks. Even with the adequate reduction, some cosmetic deformity may persist, with loss of the normal knuckle contour.
  • After a short period of immobilization, the passive and active range of motion exercises should be performed to alleviate stiffness of the MCP and PIP joints. Literature supports the early mobilization of these injuries rather than prolonged immobilization. If any loss of function persists after several weeks of these exercises, referral to occupational therapy is warranted.

Complications

Unfortunately, irrespective of chosen treatment modality, metacarpal fractures have complications associated with them, and treating those is essential to achieve good outcomes. Scope for complications is greater with open injuries and those with a soft tissue damage component. The greater the damage to surrounding soft tissues, the poorer the outcome tends to be, and the incidence of complications increases. Conversely, in young and healthy patients, complications are less common.

 Metacarpal fracture complications include:

  • Compartment syndrome – Severe trauma and/or soft tissue injury may result in compartment syndrome of the hand whether or not the injury presents in a closed (as opposed to open) fashion.  Although relatively rare compared to the lower extremities, acute compartment syndrome of the hand should be ruled out in all clinical presentations associated with significant hand soft tissue swelling/deformity.
  • Stiffness – Stiffness is common and often coexists with tendon adhesions. Longer immobilization periods, as well as periosteal stripping and neurovascular injuries, increase the risk of it. Prevention includes using low profile plates, splinting in functional positions, pain control, and early mobilization. In severe cases, tenolysis might be needed to improve the outcome.
  • Malunion – Malunion is the most common complication and results in a deformity, which can be problematic both functionally and cosmetically. Extensors are more likely to be affected than flexors in metacarpal fractures because of bone shortening. Surgery is required to treat malunion if indicated in a particular patient.
  • Non-union – Non-union is a lack of bone healing four months after the injury. It is rare and commonly associated with nerve injury, infection, bone loss, and revascularizing methods of fixation. Diagnosis is made clinically with the help of radiological evidence. It can result from inadequate immobilization, failed fixation, bone loss, and poor tissue approximation. The treatment is a stable fixation with or without bone grafting. Occasionally tenolysis is also required to improve function.
  • Tendon rupture – Plate fixation runs a risk of tendon irritation and in worst cases, rupture. If plates are used, periosteal closure should be done whenever possible to reduce this risk.  Healthcare providers should evaluate extensor tendon function following operative and nonoperative management of these injuries.
  • Infection (including osteomyelitis) – Although metacarpal osteomyelitis is rare, it requires removal of all metalwork, taking cultures from tissues, and thorough debridement. Over 50% of such infections ends in amputation.
  • Cold intolerance – Cold intolerance is a known complication of hand trauma and may affect over a third of patients.
  • Chronic pain – Intra-articular fractures have a slightly worse prognosis, with 40% of patients with metacarpal base fractures reporting chronic pain irrespective of management method. Arthrodesis can be performed to manage this if severe.
  • Instability – Long-term instability is a risk, particularly in thumb base fractures.

References

ByRx Harun

Metacarpal Fractures – Causes, Symptom, Treatment

Metacarpal fractures account for 40% of all hand fractures.  A Boxer’s fracture is a fracture of the fifth metacarpal neck, named for the classic mechanism of injury in which direct trauma is applied to a clenched fist.  This represents 10% of all hand fractures. Treatment for a Boxer’s fracture varies based on whether the fracture is open or closed, characteristics of the fracture including the degree of angulation, shortening, and rotation, and other concomitant injuries. Immobilization with an ulnar gutter splint may be the definitive treatment for closed, non-displaced fractures without angulation or rotation, while open fractures, significantly angulated or malrotated fractures or those involving injury to neurovascular structures may require operative fixation.

Pathophysiology

The fifth metacarpal bone is one of the five metacarpal bones of the hand. The fifth metacarpal is associated with the fifth digit. The metacarpal bone consists of a head (distally located), neck, body, and base (proximally located). Axial load via direct trauma to a clenched fist transfers energy to the metacarpal bone, causing fractures most commonly at the neck, and typically resulting in apex dorsal angulation due in part to the forces exerted by the pull of the interosseous muscles. The interosseous muscles, responsible for adduction and abduction of the fingers, originate from the metacarpal shafts and insert onto proximal phalanges. The collateral ligaments also join the metacarpal bones to the proximal phalanges and must be taken into consideration during splinting to minimize the risk of loss of motion due to shortening of the ligaments. The ligaments are taut in flexion, and more slack in extension, therefore the MCP joints should be splinted in flexion to prevent shortening (intrinsic plus positioning). The arteries and nerves supplying the fingers are adjacent to the metacarpal bones and can be injured in severely displaced Boxer’s fractures, requiring surgical intervention.

Metacarpal fractures

Causes Of Metacarpal Fractures

The most common mechanism of injury for Boxer’s fracture is punching, e.g., the axial pressure applied to the metacarpal bone when the fist is in a clenched position. Direct trauma to the dorsum of the hand may also cause a fracture of the fifth metacarpal neck. Unlike many other hand and wrist fractures, a Boxer’s fracture typically does not occur with a fall onto an outstretched hand.

Metacarpal fractures

  • Injury to the phalanges – occurs with direct, blunt trauma, penetrating trauma, and crush injuries.
  • Sudden forceful  fall down
  • Road traffic accident
  • Falls – Falling onto an outstretched hand is one of the most common causes of broken and fractures.
  • Sports injuries – Many fractures occur during contact sports or sports in which you might fall onto an outstretched hand — such as in-line skating or snowboarding.
  • Motor vehicle crashes – Motor vehicle crashes can cause wrist bones to break, sometimes into many pieces, and often require surgical repair.
  • Have osteoporosis –  a disease that weakens your bones
  • Eave low muscle mass or poor muscle strength – or lack agility and have poor balance (these conditions make you more likely to fall)
  • Walk or do other activities in the snow or on the ice – or do activities that require a lot of forwarding momenta, such as in-line skating and skiing
  • Wave an inadequate intake of calcium or vitamin D
  • Football or soccer, especially on artificial turf
  • Rugby
  • Horseback riding
  • Hockey
  • Skiing
  • Snowboarding
  • In-line skating
  • Jumping on a trampoline

Symptoms of Metacarpal Fractures

The symptoms are pain and tenderness in the specific location of the hand, which corresponds to the metacarpal bone around the knuckle.

  • There will be swelling of the hand along with discoloration or bruising in the affected area. Abrasions or lacerations of the hand are also likely to occur. The respective finger may be misaligned, and the movement of that finger may be limited and painful.
  • Painful bruising and swelling of the back and front of the hand
  • The pain of the back of the hand in the area of the fractured 5th metacarpal
  • The bent, claw-like pinky finger that looks out of alignment
  • Limited range of motion of the hand and of the 4th and 5th fingers
  • When a fracture occurs, there may be a snapping or popping sensation.
  • Tenderness near the base of the pinky finger
  • Inability or limited ability to move the pinky or ring finger
  • The knuckles of the affected finger appearing flat and no longer protruding as usual
  • Problems trying to grip with the injured hand
  • Numbness
  • Coldness in the hand

Metacarpal fractures

Diagnosis of Metacarpal Fractures

History and Physical

Patients with Boxer’s fractures present with complaints of dorsal hand pain, swelling, and possible deformity in the setting of one of the mechanisms typically associated with this injury involving direct trauma to the hand.

Complete physical exam of a potential Boxer’s fracture should include an examination of the entire hand, comparison to the contralateral hand, with special attention to the following:

  • Skin – Closely inspect the skin for any breaks, especially near the metacarpal head, typically the point of impact. When a Boxer’s fracture is sustained by a blow to the face, the recipient’s tooth may cause a laceration or abrasion known as a “fight bite.” This may require operative irrigation and debridement.
  • Neurovascular exam – As with all suspected fractures, a neurovascular exam should test for sensation, motor function, and blood flow distal to the injury.
  • Angulation – Boxer’s fractures are typically associated with apex dorsal angulation, thereby resulting in depression of the MCP joint and loss of the normal knuckle contour. With significantly angulated fractures, “pseudo-clawing” may be observed due to damage to the extensor apparatus; pseudo-clawing is a hyperextension of the MCP joint and flexion at the PIP joint. The degree of angulation is determined using plain films.
  • Rotational alignment – Any degree of malrotation warrants referral to a hand surgeon and therefore assessment of rotational alignment is a crucial component of the physical exam. Alignment can be assessed by examining the hand with the MCP and PCP joints in flexion, and DIP joints extended. If lines are drawn along the digits and extended distally, normally aligned digits will show the convergence of these lines. If the line extended from the fifth finger does not converge towards the others, suspect malrotation.
  • Malrotation – can also be detected by examining the hand with the MCPs flexed, and PCPs and DIPs extended. The fingernails should be in line along a single plane.

Imaging

  • Plain radiographs – are the standard of care to diagnose Boxer’s fractures and determine a degree of angulation. Anteroposterior, lateral, and oblique views should be obtained. The lateral view should be used to measure the degree of angulation of the shaft of the metacarpal as compared to the mid-point of the fracture fragment. Normal angulation of the metacarpal head to the neck is 15 degrees, so the angulation of the fracture should be measured as that more than the baseline of 15 degrees.
  • Ultrasound – Recent literature suggests that bedside ultrasound may also be used to make an initial diagnosis of a Boxer’s fracture.
  • CT Scan – is generally not used for the diagnosis of metacarpal fractures; however occult fractures may be detected via CT in patients for whom there is a high degree of clinical suspicion for fracture and negative plain radiographs.

Metacarpal fractures

Treatment of Metacarpal Fractures

Non-Surgical

Treatment available can be broadly

  • Get medical help immediately – If you fall on an outstretched arm, get into a car accident or are hit while playing a sport and feel intense pain in your shoulder area, then get medical care immediately.  cause significant pain in the front part of your shoulder, closer to the base of your hand. You’ll innately know that something is seriously wrong because you won’t be able to lift your arm up above the heart level. Cleaning and treating any wounds on the skin of the injured hand.
  • Apply ice to your fractured area immediately – Before going to the hospital metacarpal fractures /boxer’s fracture(regardless if you had surgery or not), you should apply a bag of crushed ice (or something cold) to your injured in order to reduce the swelling and numb the pain. Ice therapy is effective for acute (recent) injuries that involve swelling because it reduces blood flow by constricting local blood vessels. Apply the crushed for 15 minutes three to five times daily until the soreness and inflammation eventually fades away
  • Immobilization Alone – For a Boxer’s fracture that is closed, not angulated, and not malrotated or otherwise displaced, splinting is used for initial immobilization. A Boxer’s fracture should be immobilized with an ulnar gutter splint. Alternatively, a pre-made Galveston splint or a custom orthosis may be used. The hand should be positioned in the intrinsic plus position for splinting mild wrist extension, 70 to 90 degrees of flexion at MCP joint, and slight flexion at the DIP and PIP joints. Flexion of these joints is important to prevent shortening of the collateral ligaments and subsequent loss of range of motion and functional impairment.
  • Lightly exercise after the pain fades – After a couple of weeks when the swelling has subsided and the pain has faded away, remove your arm sling for short periods and carefully move your arm in all different directions. Don’t aggravate the metacarpal fractures /boxer’s fracture so that it hurts, but gently reintroduce movements to the involved joints and muscles. Start cautiously, maybe starting with light calisthenics and then progress to holding light weights (five-pound weights to start).
  • Practice stretching and strengthening exercises – of the fingers, elbow, and shoulder if your doctor recommends them.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for three to five weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)
  • Get a supportive arm sling – Due to their anatomical position, metacarpal fractures /boxer’s fracture can’t be cast like a broken limb can. Instead, a supportive arm sling or “figure-eight” splint is typically used for support and comfort, either immediately after the injury if it’s just a hairline fracture or following surgery, if it’s a complicated fracture. 
  • Get a referral to physical therapy – Once you’ve recovered and able to remove your arm sling splint for good, you’ll likely notice that the muscles surrounding your metacarpal fractures /boxer’s fracture look smaller and feel weaker. That’s because muscle tissue atrophies without movement. If this occurs, then you’ll need to get a referral for some physical rehabilitation. Rehab can start once you are cleared by your orthopedist, are pain-free, and can perform all the basic arm and phalanges movements. A physiotherapist or athletic trainer can show you specific rehabilitation exercises and stretches to restore your muscle strength, joint movements, and flexibility
  • Taping the hand – as a type of soft splint, with the pinky and ring finger, taped together to help in healing correction of the dislocated bone, which may be done with anesthesia

Rest Your Hand

Once you’re discharged from the hospital in an arm sling, your top priority is to rest your hand and not further inflame the injury. Of course, the arm sling not only provides support, but it also restricts movement, which is why you should keep it on even during sleep. Avoiding the temptation to move your hand and arm will help the bone mend quicker and the pain fades away sooner.
  • Depending on what you do for a living and if the injury is to your dominant side, you may need to take a couple of weeks off work to recuperate.
  • Healing takes between four to six weeks in younger people and up to 12 weeks in the elderly, but it depends on the severity of the radial and phalangeal fractures 
  • Athletes in good health are typically able to resume their sporting activities within two months of breaking they’re depending on the severity of the break and the specific sport.
  • Sleeping on your back (with the sling on) is necessary to keep the pressure off your shoulder and prevent stress.

Eat Nutritiously During Your Recovery

All bones and tissues in the body need certain nutrients in order to heal properly and in a timely manner. Eating a nutritious and balanced diet that includes lots of minerals and vitamins is proven to help heal broken bones of all types, including. Therefore, focus on eating lots of fresh produce (fruits and veggies), whole grains, lean meats, and fish to give your body the building blocks needed to properly repair your. In addition, drink plenty of purified water, milk, and other dairy-based beverages to augment what you eat.

  • Broken bones need ample minerals (calcium, phosphorus, magnesium, boron) and protein to become strong and healthy again.
  • Excellent sources of minerals/protein include dairy products, tofu, beans, broccoli, nuts and seeds, sardines, and salmon.
  • Important vitamins that are needed for bone healing include vitamin C (needed to make collagen), vitamin D (crucial for mineral absorption), and vitamin K (binds calcium to bones and triggers collagen formation).
  • Conversely, don’t consume food or drink that is known to impair bone/tissue healing, such as alcoholic beverages, sodas, most fast food items, and foods made with lots of refined sugars and preservatives.

Medication

The following medications may be considered doctor to relieve acute and immediate pain

The appropriate treatment for a Boxer’s fracture on the initial presentation varies based on whether the fracture is open or closed, the degree of angulation, rotation, and other concomitant injuries. Due to the risk of infection from “fight bite,” even very small wounds should be thoroughly irrigated, and there should be a low threshold for antibiotic treatment.

Surgery

Closed Reduction

Closed reduction is required for a Boxer’s fracture with significant angulation greater than 30 degrees.

  • Analgesia Options – for the procedure include a hematoma block or an ulnar nerve block. Younger children or very anxious patients may require procedural sedation, but this procedure typically is tolerated well without sedation.
  • A closed reduction of a Boxer’s fracture – is accomplished by using the “90-90 method.” The MCP, DIP, and PIP joints should all be flexed to 90 degrees. The clinician should then apply volar pressure over the dorsal aspect of the fracture site while applying pressure axially to the flexed PIP joint. This axial pressure to the PIP applies dorsal force to the distal fracture fragment. The clinician should be able to feel the reduction when it has been achieved. The injury should be immobilized with an ulnar gutter splint, and post-reduction films should be taken to assess for adequate reduction . The fifth metacarpal neck can tolerate angulation of up to 50-60 degrees and management may be continued non-operatively if remains within acceptable tolerances.
  • Surgical Referral – Surgical referral is indicated for fractures that are open, severely comminuted, associated with neurovascular injury, and for fractures with any malrotation. Surgical referral is also appropriate for fractures with significant angulation if the initial provider is unsuccessful in achieving adequate reduction and alignment outside acceptable parameters.  Surgical options include open reduction internal fixation or closed reduction percutaneous pinning.

Boxer’s Fracture Treatment Self-Care at Home

Home care for boxer’s fractures can be divided into care prior to seeing a doctor and care after a diagnosis of a boxer’s fracture is made.

  • The immediate goals of caring for an injured hand are to minimize pain and swelling, minimize the risk of infection of any open cuts, and to prevent further injury caused by an unstable fracture.
  • The best approach to reduce pain and swelling is to apply an ice pack to the injured area. If ice is not available, placing a towel soaked in cold water on the injured hand will work. Elevating the injured hand will also help reduce swelling.
  • An open cut sustained at the time of injury suggests an open fracture-a type of broken bone that is at increased risk for infection and poor healing. All cuts should be washed with soap and water and then covered with a clean bandage immediately to reduce the risk of infection.
  • A key technique to prevent further injury from a fracture is to immobilize the injured hand. This is often best accomplished by holding the injured hand in the uninjured hand. In addition, take care not to use the injured hand to lift objects or perform any task that would place stress on it. Using a broken hand that is not properly immobilized can cause damage to surrounding muscles, blood vessels, tendons, ligaments, and nerves.
  • Home care after the diagnosis of the boxer’s fracture is based on how the doctor treated the hand. Home care includes pain management, cast or splint care, and monitoring for signs of infection.
  • Bones, like many other parts of the body, contain nerve fibers that transmit the sensation of pain. Pain from broken bones is caused by swelling due to injury of the tissues around the fracture site, or by the broken bone moving against the nerve fibers. Pain should lessen once a broken bone is immobilized and movement is prevented. Some degree of pain may still persist. When a doctor writes a prescription for pain medication, it is important to take the medication as prescribed. This will help alleviate pain and will minimize the risk of any unwanted side effects from the medication.
  • Splinting or casting commonly is performed on all boxer’s fractures that do not require immediate surgery. All splints and casts should be kept dry in order to maintain their strength. A complication that can be seen with this procedure is the cast becoming too tight from the swelling of the fracture. When this happens, you may feel pain under the cast or splint. Another sign is numbness or tingling in the fingers on the casted hand. In addition, the finger may become cool to the touch. When this occurs, call your doctor or report to a hospital’s emergency department immediately for evaluation.
  • Infection can occur at an open cut. Wounds should be kept clean and covered until healing is complete. If stitches are used to close a cut, the doctor will provide additional instructions on how to care for the stitches, and when they should be removed. It is important to follow these directions carefully to minimize the risk of infection. Monitor any cuts for signs of infection. Warning signs of infection include redness, red streaking away from the cut, warmth, or swelling around the site of the cut. Pus may also drain from the wound. Any of these signs require immediate evaluation.

Next Steps

A person with a boxer’s fracture frequently is advised to follow-up with a bone specialist (orthopedic surgeon) or a hand specialist to ensure that the broken bone mends properly. The hand specialist may be either an orthopedic surgeon or a plastic surgeon who specializes in hand injuries.

  • Follow-up should occur within 1 week of the initial injury if there is not a critical amount of angulation. If angulation of the fracture exceeds acceptable levels, follow-up should occur sooner.
  • If a plaster splint is placed in your doctor’s office, or in the emergency department, and you develop increased pain or numbness in your fingers, or if your fingers become cold and blue, then loosen the splint, notify your doctor, and return to the emergency department immediately.

Follow-Up

Boxer’s fractures should be sent for repeat radiographs within one week to assess alignment.

  • Radiographs should be obtained every two weeks following, until clinical and radiographic healing are present, typically between four to six weeks. Even with the adequate reduction, some cosmetic deformity may persist, with loss of the normal knuckle contour.
  • After a short period of immobilization, the passive and active range of motion exercises should be performed to alleviate stiffness of the MCP and PIP joints. Literature supports the early mobilization of these injuries rather than prolonged immobilization. If any loss of function persists after several weeks of these exercises, referral to occupational therapy is warranted.

Complications

Unfortunately, irrespective of chosen treatment modality, metacarpal fractures have complications associated with them, and treating those is essential to achieve good outcomes. Scope for complications is greater with open injuries and those with a soft tissue damage component. The greater the damage to surrounding soft tissues, the poorer the outcome tends to be, and the incidence of complications increases. Conversely, in young and healthy patients, complications are less common.

 Metacarpal fracture complications include:

  • Compartment syndrome – Severe trauma and/or soft tissue injury may result in compartment syndrome of the hand whether or not the injury presents in a closed (as opposed to open) fashion.  Although relatively rare compared to the lower extremities, acute compartment syndrome of the hand should be ruled out in all clinical presentations associated with significant hand soft tissue swelling/deformity.
  • Stiffness – Stiffness is common and often coexists with tendon adhesions. Longer immobilization periods, as well as periosteal stripping and neurovascular injuries, increase the risk of it. Prevention includes using low profile plates, splinting in functional positions, pain control, and early mobilization. In severe cases, tenolysis might be needed to improve the outcome.
  • Malunion – Malunion is the most common complication and results in a deformity, which can be problematic both functionally and cosmetically. Extensors are more likely to be affected than flexors in metacarpal fractures because of bone shortening. Surgery is required to treat malunion if indicated in a particular patient.
  • Non-union – Non-union is a lack of bone healing four months after the injury. It is rare and commonly associated with nerve injury, infection, bone loss, and revascularizing methods of fixation. Diagnosis is made clinically with the help of radiological evidence. It can result from inadequate immobilization, failed fixation, bone loss, and poor tissue approximation. The treatment is a stable fixation with or without bone grafting. Occasionally tenolysis is also required to improve function.
  • Tendon rupture – Plate fixation runs a risk of tendon irritation and in worst cases, rupture. If plates are used, periosteal closure should be done whenever possible to reduce this risk.  Healthcare providers should evaluate extensor tendon function following operative and nonoperative management of these injuries.
  • Infection (including osteomyelitis) – Although metacarpal osteomyelitis is rare, it requires removal of all metalwork, taking cultures from tissues, and thorough debridement. Over 50% of such infections ends in amputation.
  • Cold intolerance – Cold intolerance is a known complication of hand trauma and may affect over a third of patients.
  • Chronic pain – Intra-articular fractures have a slightly worse prognosis, with 40% of patients with metacarpal base fractures reporting chronic pain irrespective of management method. Arthrodesis can be performed to manage this if severe.
  • Instability – Long-term instability is a risk, particularly in thumb base fractures.

References

ByRx Harun

Digital Amputation – Technique, Procedure, Indications

Digital amputation is often associated with traumatic injuries but is also seen within the elective surgery setting, such as cancer resection and management of chronic conditions such as Dupuytren’s contractures or peripheral vascular disease. It is also seen as a consequence of severe sepsis, although this often results in auto-amputation.

In the traumatic setting, the primary objective of management is to salvage the amputated finger to restore function, especially if the dominant hand is affected. However, this is not always possible, as there are many factors to consider.  These factors include the time from injury, mechanism of injury, and degree of contamination . In the elective setting, determinants for the level of amputation include various factors, such as oncological clearance, symptom relief, and function preservation; however, for the purpose of this paper, the primary focus will be on a traumatic finger amputation.

Pathophysiology

Typically, once a finger amputation has occurred, ischemic tolerance times are 12 hours if warm and up to 24 hours if cold. For more proximal amputations, these times are halved. The amputated part should be covered in a normal saline-soaked gauze, sealed in a plastic bag and submerged in icy water with no direct contact with ice. If there is direct contact with ice, it could result in tissue damage and render the amputated part non-viable. More proximal amputations are less tolerant of ischemia due to the presence of muscle tissue, which can undergo irreversible changes after 6 hours of ischemia.

Causes of Digital Amputation

In traumatic injuries, one should assess the patient in accordance with the Advanced Trauma Life Support approach (Airway, Breathing, Circulation, etc.) for a systematic assessment of the patient and to rule out any life-threatening injuries before referring or transferring patients for further specialist management of their finger injuries. Determining the mechanism of injury is crucial, as it could affect decisions regarding management and outcome for the patient.  Sharp injuries may provide a clear amputation level, whereas blunt trauma may correlate with crush injuries at the level of the amputation, and avulsion injuries can cause distant trauma away from the level of visible injury.\

Diagnosis of Digital Amputation

History

  • Hand dominance, occupation, time of injury, mechanism of injury, other associated injuries, comorbidities and NPO status.

Physical Exam

  • Level of amputation, structures involved, neurovascular status, function, and degree of contamination (if relevant).  It is vital to assess the amputated part and ultimately determine its suitability for replanting respective to the mechanism of injury (e.g., crush, guillotine-style, avulsion).

Finger amputations classification is generally according to the level of amputation.  The Sebastian and Chung classification is outlined below:

  • Zone 1 distal amputations

    • Zone 1A – distal to lunula, through the sterile matrix
    • Zone 1B – between lunula and nailbed
  • Zone 1 proximal amputations

    • Zone 1C – between flexor digitorum profundus insertion and neck of the middle phalanx
    • Zone 1D – between the neck of the middle phalanx and insertion of the flexor digitorum superficialis

Evaluation

Laboratory:(optional depending on clinical scenario)

  • CBC (complete blood count) to assess for blood loss
  • Coagulation studies (only if the patient is known to be on anticoagulants)

Imaging

  • Plain radiograph of the affected finger/hand and amputated part; this allows assessment of bony injuries, bone quality and guide decisions regarding bony fixation methods. Angiograms are normally not requested unless it forms part of investigations for other injuries.

Treatment of Digital Amputation

Initial management – first aid, ATLS approach to the patient, preserve amputated part, tetanus vaccination, and antibiotics as per local hospital guidelines.

In the traumatic setting, the ideal candidate for replantation should be a young, healthy, sharp mechanism of injury (giving a clear amputation level), minimal tissue destruction and contamination.

Indications for replantation:

  • Thumb amputation – loss of thumb represent approximately 40 to 50% loss of hand function
  • Multiple finger amputations
  • Amputations at or proximal to palm
  • Pediatric patients with finger amputation(s) at any level
  • Single finger amputation distal to the insertion of the flexor digitorum superficialis (zone I) (studies have shown that replantation distal to this insertion point had better outcomes than those proximal)
  • Patient consideration – specialist requirement, e.g., occupation or pre-morbid compromised hand function

Contraindications and relative contraindications:

  • Single-digit injury through flexor tendon zone II
  • Smoking
  • Severe crush
  • Mangled limb
  • Heavy contamination
  • Segmental injuries
  • Prolonged warm ischaemic time
  • Medically unfit
  • Improperly preserved amputated part
  • Avulsion injuries
  • Other life-threatening injuries
  • Mentally unstable
  • Previous surgery to the affected finger
  • ‘Redline’ or ‘red ribbon’ sign (seen in vessels during surgery), which predicts the level of intimal damage in the vessel

Once the patient arrives in the operating theater, the amputated part should undergo a careful assessment for suitability for replanting. All structures should be dissected and identified, especially the neurovascular bundle. If no suitable vessels are identified, then replantation should not proceed. Usually, there is an order for repair of structures:

  • Bone fixation with or without bone shortening to allow repair of soft tissue
  • Tendon repair – extensor and flexor tendons
  • Nerve repair
  • Arterial anastomosis
  • Venous anastomosis (if suitable veins are present)

Bone fixation should be simple and quick to perform, but it also depends on the configuration of bony injuries. Usually, two Kirschner wires are an option, but other fixation methods may also be used (i.e., plate fixation). Occasionally, bone shortening is required before fixation to allow for soft tissue closure and repair of neurovascular structures without excessive tension.

Differential Diagnosis

Digit amputations tend to be a straight forward presentation, but infectious processes can mimic amputation leading to loss of fingers/toes.

Prognosis

Previous studies have found these factors to have a substantial effect on functional outcome:

  • Level of the amputation
  • Number of fingers injured
  • Circumstance and mechanism surround the injury
  • Time from injury

Survival rates following replantation have been reported between 80 to 90%, although these figures have come from specialist institutions. It is also worth noting that venous repair improves survival regardless of the level of amputation. This fact is important, as the venous repair is not always possible, and as a result, it could lead to venous congestion.  One solution would be to make a small distal incision to allow venous drainage or the use of leeches.

Complications

Complications classify according to the time of onset

  • Early complications

    • Arterial insufficiency

      • Arterial thrombosis presents typically as a pale, cool and pulseless digit
      • It is vital during the post-operative period to maximize blood flow through the anastomoses and prevent thrombosis
    • Venous insufficiency

      • Venous congestion typically presents as a purple digit with brisk capillary refill and swelling
      • Concerns of possible anastomosis failure or thrombosis should prompt urgent return to theatre for salvage – in cases of venous congestion, leech therapy or anticoagulation may be considered to improve venous return
    • Infection
  • Late complications

    • Cold intolerance
    • Tendon adhesions
    • Stiffness
    • Bony malunion
    • Altered sensation

Postoperative and Rehabilitation Care

Post-operative management:

  • Maintain adequate hydration and circulation volume
  • Analgesia
  • Keep the affected limb elevated and warm
  • Frequent monitoring of the replant capillary refill, color, and temperature
  • Avoid dressings changes in the first 48 to 72 hours to minimize manipulation of the repair
  • Consider anticoagulation
  • In cases of artery-only replants, consider stab incision to the distal amputated tip and apply heparin soaked gauze to allow venous drainage or use leeches instead. This treatment can end once the finger becomes pink with normal capillary refill thus indicating adequate venous drainage

Some patients require further surgery to improve their function, such as tenolysis, bone grafting, tendon transfer, etc. On average, following upper limb amputations, patients return to work within 2 to 3 months after injury. Studies show that functional recovery is better in more distal injuries than proximal, both in terms of movement and power.

Deterrence and Patient Education

  • Good health and safety regulations – to provide a safe working environment and reduce occupation-related injuries
  • Public information leaflet/public awareness campaign – same objective as above, but to ensure a safe home environment for work and recreation, e.g., BBC News article in May 2018, warning the public of DIY and gardening accidents

Pearls and Other Issues

  • Once a patient with an amputation injury arrives in hospital, a speedy but thorough assessment is essential to minimize the delay to definitive surgical management
  • Often, amputated parts are brought to the emergency department (although sometimes forgotten at the scene or referring hospital) in inappropriate storage. As a specialist center, it is crucial to inform referring units of the best way to preserve the amputated part, to label it with the patient’s details and keep it with the patient to avoid the loss
  • Early involvement of specialists where possible
  • Take account of patient factors, i.e., age, occupation, comorbidities, and also patient wishes – replantation requires long and complex surgery, hospital admission, the risk of complications, long rehabilitation, and risk of an incomplete return to normal function.
    • This may not be acceptable in some patients, especially in those who are self-employed and cannot take prolonged time off work
    • As such, criminalization of the affected finger may allow early return to work and normal function for the patient – if possible, the patient needs to understand their options and the potential outcome of each
  • Good rehabilitation process – early involvement of hand therapists.

References

ByRx Harun

Fingertip Injuries – Causes, Symptoms, Treatment

Fingertip injuries are commonly seen by family and emergency physicians. Many of the cases are simple to treat and do not need specialized treatment by a hand surgeon. However, there are certain conditions where early intervention by a hand surgeon is warranted for better functional and aesthetic outcomes. Common injuries include mallet finger injury, crush injuries to the fingertip with resultant subungual hematoma, nail bed laceration, partial or complete amputation of the fingertips, pulp amputations, and fractures of the distal phalanges.

The fingertip is the most distal portion of the finger providing the tactile and sensory functions that are then relayed to the brain. It is anatomically defined as the portion of the finger distal to the insertion of the flexor digitorum superficialis and extensor tendons on the distal phalanx, or the interphalangeal joint when referring to the thumb. The neurovascular supply of the fingertip is via digital arteries and nerves which trifurcate near the distal interphalangeal joint.

Types of Fingertip injuries

Allen’s classifications are based on the four types listed below

  • Type 1: involves only the pulp
  • Type 2: involves the pulp and nail bed
  • Type 3: includes partial loss of the distal phalanx
  • Type 4: injury proximal to the lunula

Type 1 injuries may heal quite well by secondary intention. Type 3 and type 4 often require some flap coverage.

Causes of Fingertip injuries

Fingertip injuries can be classified by the mechanism of injury or the level of injury based on the frequently used Allen classification system.The most common mechanisms seen include the following

  • Crush injury – due to forces of compression. An example is a door closing on the finger, injury with a hammer, and objects being dropped on fingers. This can present as a closed or an open injury and can be associated with distal phalanx fractures.
  • A laceration –  is secondary to a household instrument (knife, scissors, and cans) or works tools (rotatory saw) involving pulp or nail and/or the nail bed complex.
  • Injury to the fingertip – occurs with direct, blunt trauma, penetrating trauma, and crush injuries.
  • Sudden forceful  fall down
  • Road traffic accident
  • Falls – Falling onto an outstretched hand is one of the most common causes of broken and fractures.
  • Sports injuries – Many fractures occur during contact sports or sports in which you might fall onto an outstretched hand — such as in-line skating or snowboarding.
  • Motor vehicle crashes – Motor vehicle crashes can cause wrist bones to break, sometimes into many pieces, and often require surgical repair.
  • Have osteoporosis –  a disease that weakens your bones
  • Eave low muscle mass or poor muscle strength – or lack agility and have poor balance (these conditions make you more likely to fall)
  • Walk or do other activities in the snow or on the ice – or do activities that require a lot of forwarding momenta, such as in-line skating and skiing
  • Wave an inadequate intake of calcium or vitamin D
  • Football or soccer, especially on artificial turf
  • Rugby
  • Horseback riding
  • Hockey
  • Skiing
  • Snowboarding
  • In-line skating
  • Jumping on a trampoline

Symptoms Of Fingertip injuries

The most common symptoms include

  • Severe pain that might worsen when gripping or squeezing or moving your hand or wrist
  • Swelling
  • Tenderness
  • Bruising
  • Obvious deformity, such as a bent  wrist
  • Pain
  • The wrist hanging in a deformed way
  • Pain, especially when flexing the wrist
  • Deformity of the wrist, causing it to look crooked and bent.
  • Your wrist is in great pain.
  • Your wrist, arm, or hand is numb.
  • Your fingers are pale.
  • Other symptoms include immediate swelling and/or bruising near the fracture, grinding sounds with arm movements and potential numbness, and tingling in the arm/hand.

Diagnosis of Fingertip injuries

History and Physical

The main component to focus on assessment are

  • History – handedness, occupation, time of injury, place of injury (work-related)
  • Mechanism of injury – magnitude, direction, point of contact, and type of force that caused the trauma
  • Soft tissue damage
  • Finger alignment – cascade, digit scissoring, rotational defect
  • Open vs. Closed
  • Tendon nerve vessel damage – tendon ruptures may accompany dislocations such as the terminal extensor tendon rupture in the distal interphalangeal joint dislocation or a central slip rupture in a proximal interphalangeal joint dislocation. Tendon damage otherwise only usually occurs with associated lacerations or open combined injuries. Nerves and vessels are rarely injured as part of a simple fracture or dislocation but often suffer injury in major open hand trauma.

Radiographs

Diagnostic tests to consider include

  • Radiographs – PA and lateral and oblique
  • CT – rarely needed. May occasionally be helpful in operative planning with complex peri-articular fractures such as pilon fractures at the base of middle phalanx fractures. It can be used to detect foreign bodies like plastic, glass, and wood.
  • Ultrasound – detect objects that lack radiopacity
  • MRI – unclear diagnosis, foreign material, or tumor

Mostly phalangeal fractures are described by location (head, neck, shaft, base) and pattern (transverse, spiral, oblique, comminuted).

History and Physical

  • Patients present primarily with pain, inability to use the affected digit, or bleeding. Important points to elucidate are demographics (age, sex, occupation, and drug, tobacco, and alcohol use), hand dominance, involved digit, mechanism of injury, and previous medical and surgical conditions. Physical examination should be done in a controlled setting with appropriate lighting to allow for visualization of the injury and a proper assessment based on history. Findings may reveal lacerations, closed or open fractures, and amputations of the tip.

Evaluation

Evaluation should include assessing for sensation, the range of motion at the interphalangeal joints, and capillary refill. X-rays of the affected digit and hand with two to three views are required.

Consultation with a hand surgery service is required for the following

  • Possible tendon injuries
  • Fractures (displaced or intra-articular)
  • Dislocations, such as open dislocation
  • Significant finger avulsion
  • Extensive laceration involving the proximal fold (eponychium)
  • Amputations with significant bone exposure

Treatment of Fingertip injuries

Primary goals of treatment include pain relief and attempting to reduce bleeding. Management is based on the type and severity of the injury.

Non-Surgical

Treatment available can be broadly

  • Get medical help immediately – If you fall on an outstretched arm, get into a car accident or are hit while playing a sport and feel intense pain in your fingertip injuries, then get medical care immediately. Fingertip Injuries cause significant pain in the front part of your nail, closer to the base of your hand. You’ll innately know that something is seriously wrong because you won’t be able to lift your arm up. 
  • Apply ice to your fractured area– After you get home from the hospital phalangeal fractures (regardless if you had surgery or not), you should apply a bag of crushed ice (or something cold) to your injured in order to reduce the swelling and numb the pain. Ice therapy is effective for acute (recent) injuries that involve swelling because it reduces blood flow by constricting local blood vessels.
  • Practice stretching and strengthening exercises – of the fingers, elbow, and shoulder if your doctor recommends them.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for three to five weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)

 

Rest Your hand

.Avoiding the temptation to move your shoulder and arm will help the bone mend quicker and the pain fades away sooner.
  • Depending on what you do for a living and if the injury is to your dominant side, you may need to take a couple of weeks off work to recuperate.
  • Healing takes between four to six weeks in younger people and up to 12 weeks in the elderly, but it depends on the severity of the radial and phalangeal fractures 
  • Athletes in good health are typically able to resume their sporting activities within two months of breaking they’re depending on the severity of the break and the specific sport.

Eat Nutritiously During Your Recovery

All bones and tissues in the body need certain nutrients in order to heal properly and in a timely manner. Eating a nutritious and balanced diet that includes lots of minerals and vitamins is proven to help heal broken bones of all types, including. Therefore, focus on eating lots of fresh produce (fruits and veggies), whole grains, lean meats, and fish to give your body the building blocks needed to properly repair your. In addition, drink plenty of purified water, milk, and other dairy-based beverages to augment what you eat.

  • Broken bones need ample minerals (calcium, phosphorus, magnesium, boron) and protein to become strong and healthy again.
  • Excellent sources of minerals/protein include dairy products, tofu, beans, broccoli, nuts and seeds, sardines, and salmon.
  • Important vitamins that are needed for bone healing include vitamin C (needed to make collagen), vitamin D (crucial for mineral absorption), and vitamin K (binds calcium to bones and triggers collagen formation).
  • Conversely, don’t consume food or drink that is known to impair bone/tissue healing, such as alcoholic beverages, sodas, most fast food items, and foods made with lots of refined sugars and preservatives.

Follow-Up Care

  • You will need to see your doctor regularly until your injury heals. During these visits, he or will take x-rays to make sure the bone is healing in a good position. After the bone has healed, you will be able to gradually return to your normal activities.

Medication

The following medications may be considered your doctor to relieve acute and immediate pain

Differential Diagnosis

Subungual Hematoma

  • A subungual hematoma is due to a crushing injury. It occurs commonly from workplace accidents and presents as severe, throbbing pain with nail discoloration. It is due to a disruption of the blood vessels of the nail bed. A potential space exists between the nail plate and the underlying nail bed and matrix.
  • More than 50% of such injuries require the trephination of the nail plate to allow decompression and drainage of the hematoma.
  • If it is associated with a fracture of the distal phalanx, examination of the nail bed is suggested, followed by immobilization using an aluminum splint until the patient has no further pain.

Nailbed Injuries

  • Nail and nail bed injuries include simple and complex lacerations, avulsion injuries, and amputations. Beware those nail bed injuries are usually associated with a partial or a complete fingertip avulsion.
  • Simple and complex lacerations should be approximated as best as possible while maintaining tissue integrity and cosmesis. In the pediatric population, absorbable sutures should be used, to mitigate the need for removal.
  • If there is associated partial nail avulsion or surrounding nail fold disruption, then nail removal is required. In general, when the nail bed is avulsed, it should always be repositioned, to obtain an anatomical reconstruction of the fingernail. Lacerations of the nail bed require blunt removal of the nail and primary closure of the nail bed with absorbable sutures. The nail should then be replaced to allow new nail growth, by maintaining the nail fold space. Beware that up to 50% of nail bed injuries may have an associated fracture of the distal phalanx. Avulsion injuries involving the nail bed have a poor prognosis.
  • Closed fractures that are minimally displaced can be splinted. If angulated or displaced, closed reduction is required displaced closed reduction is required with post-reduction films and outpatient follow-up. Unstable and intra-articular fractures necessitate evaluation by orthopedic or hand surgeons, as the operative intervention is often required. Open fracture management includes a digital nerve block, irrigation, and soft tissue repair. This also will stabilize the fracture allowing for the aluminum splint placement. The patient should receive antibiotics, and close follow-up is needed either by a hand or an orthopedic surgeon.

Seymour Fractures (open physeal fracture of the distal phalanx)

  • Such fractures often occur through the cartilaginous growth plate. The insertion of the extensor tendon is proximal to the insertion of the flexor digitorum profundus. Fractures through the growth plate resulting in an extension of the proximal fragment and flexion of the distal fragment of the distal phalanx.
  • These fractures are usually open and are associated with relatively high rates of infection as well as growth arrest. Seymour fractures may mimic mallet fingers at presentation; but, the displacement occurs through the fracture rather than the distal interphalangeal (DIP) joint.

Mallet Finger

The mechanism of injury, in this case, is a flexion force directed to an actively extended finger. The extensor tendon avulses a fragment of the epiphysis resulting in an intraarticular fracture that may also extend into the metaphysis of the distal phalanx.  It is recognized as a Salter-Harris Type III or Type IV fracture.

A mallet finger occurs due to the disruption of the extensor mechanism presenting as a flexion deformity since it results in the inability to extend the DIP joint. It is the most common tendon injury among athletes.

It can be classified as follows

Type I tendon-only rupture

  • Requires an immobilized DIP joint in continuous full extension for six to ten weeks

Type II small avulsion fracture

  • Is similar to type I (if on x-ray, the splinted finger in extension is congruent with the rest of the non-injured articular surface of the distal phalanx on the distal articular surface of the middle phalanx)
  • Surgical intervention is required if an open injury is present, and 30% to 50% articular fracture is involved.

Type III  more than 25% of the articular surface is involved

  • This can be managed conservatively in most cases, except when associated with bony avulsion involving a third or more of the articular surface of the distal phalanx. At the opposite end of the spectrum is the flexor digitorum profundus avulsion, due to a forced extension of the flexed finger. In this case, the patient presents with a finger in extension and unable to flex at DIP Joint. Operative intervention is warranted.

Swan-neck Deformity

  • It causes extension of the proximal interphalangeal (PIP) joint due to the dorsal displacement of lateral bands. Chronic untreated mallet finger results in this deformity.

Boutonnière Deformity

  • This causes an extension of the DIP joint. The initial treatment includes immobilization of the PIP joint in continuous extension for five to six weeks, and hand surgery service follow-up.

Amputation

  • Amputations present a challenge in preserving function and restoring cosmesis. Non-operative management is indicated when there is no bone or tendon becomes exposed with less than 2 cm of skin loss. Operative primary closure can be performed if the exposed bone to be removed will not proximally compromise bony support to the nail bed. Flap reconstruction is indicated when removal of bone will compromise nail bed support. Several flap techniques have been described for finger and thumb amputations. These include V-Y plasty, home digital neurovascular island flap, and first dorsal metacarpal flap.
  • Secondary infections due to minor injuries such as a splinter, thorn, or nail-biting present either as a paronychia or felon. Paronychia involves the folds around the nail structures, and a felon abscess affects the fingertip pulp space. Pain, redness with a decreased movement of the affected digit are the most common manifestation. These entities require early evaluation, antibiotics, warm water or Betadine soaks, and possible incision and drainage when severe.

References

ByRx Harun

What Is Middle Phalanges Fractures? Symptoms, Treatment

What Is Middle Phalanges Fractures?/Phalangeal fractures of the hand are a common injury that presents to the emergency department and clinic. Injuries can occur at the proximal, middle, or distal phalanx. For the vast majority of phalanx fractures, an acceptable reduction is manageable with non-operative treatment. Early intervention is vital to allow healing and return of function.

The phalanges are the bones that make up the fingers of the hand and the toes of the foot. There are 56 phalanges in the human body, with fourteen on each hand and foot. Three phalanges are present on each finger and toe, with the exception of the thumb and large toe, which possess only two. The middle and far phalanges of the fourth and fifth toes are often fused together (symphalangism).[rx] The phalanges of the hand are commonly known as the finger bones. The phalanges of the foot differ from the hand in that they are often shorter and more compressed, especially in the proximal phalanges, those closest to the torso.

Phalangeal fractures

Anatomy of Middle Phalanges Fractures

The proximal and middle phalanges of the hand all possess a head, neck, shaft, and base. The distal phalanx divides into the tuft, shaft, and base. The proximal phalanx receives stabilization from the surrounding anatomy, including proper and accessory collateral ligaments, volar plate, and extensor/flexor tendons. The middle phalanx has two main insertions: the central slip (extensor mechanism) and the flexor digitorum superficialis (FDS). The distal phalanx anatomy includes distal interphalangeal joint (DIPJ), which is enveloped by the extensor and flexor tendons along with the volar plate and collateral ligaments. The flexor digitorum profundus (FDP) inserts at the volar metaphysis of the distal phalanx. At proximal interphalangeal joint (PIPJ), the flexor digitorum profundus and the flexor digitorum superficialis are within one sheath. The flexor digitorum superficialis is volar, and the flexor digitorum profundus is dorsal. As the tendons transverse the PIPJ the flexor digitorum superficialis bifurcates into two slips that form the Camper’s chiasm which inserts on the volar aspect of the middle phalanx. This important anatomic relationship that can lead to a swan neck deformity (a hyperextended PIPJ and flexed DIPJ).

Pathophysiology

Phalanx fractures displace according to the level at which the fracture occurs due to the eloquent soft tissue and tendon involvement of the phalanx.

Distal Phalanx

Distal phalanx fractures are usually nondisplaced or comminuted fractures. They classify into tuft (tip), shaft, or articular injuries.

  • Tuft fractures usually result from a crushing mechanism such as hitting the tip of a finger with a hammer. A tuft fracture is frequently an open fracture due to its common association with injury to the surrounding soft tissues or nail bed. Even without surrounding soft tissue injury, the fracture is considered open in the presence of a nail bed injury.
  • Shaft fractures
  • Intra-articular fractures are associated with extensor tendon avulsion (Mallet’s finger) or flexor digitorum profundus tendon avulsion (Jersey’s finger).
    • Mallet finger

      • The traumatic loss of the terminal extension at the level of the DIPJ
    • Jersey Finger

      • Hyperextension injury with avulsion of flexor digitorum profundus

Middle Phalanx

Middle phalanx fractures occur in an apex dorsal or volar angulation depending on location. Apex dorsal angulation results from the fracture occurring proximal to the flexor digitorum superficialis (FDS) insertion so that the fragment becomes displaced by the pull of the central slip. Apex volar angulation occurs if the fracture is distal to the flexor digitorum superficialis insertion. A fracture through the middle third may angulate in either direction or not at all as a result of the inherent stability provided by an intact and prolonged flexor digitorum superficialis insertion. 

Proximal Phalanx

Proximal phalanx fractures occur in an apex volar angulation (dorsal angulation). The proximal fragment flexes due to interossei, and the distal phalanx extends due to the central slip.

Causes Of Middle Phalanges Fractures

Colles’ fracture

  • Injury to the phalanges – occurs with direct, blunt trauma, penetrating trauma, and crush injuries.
  • Sudden forceful  fall down
  • Road traffic accident
  • Falls – Falling onto an outstretched hand is one of the most common causes of broken and fractures.
  • Sports injuries – Many fractures occur during contact sports or sports in which you might fall onto an outstretched hand — such as in-line skating or snowboarding.
  • Motor vehicle crashes – Motor vehicle crashes can cause wrist bones to break, sometimes into many pieces, and often require surgical repair.
  • Have osteoporosis –  a disease that weakens your bones
  • Eave low muscle mass or poor muscle strength – or lack agility and have poor balance (these conditions make you more likely to fall)
  • Walk or do other activities in the snow or on the ice – or do activities that require a lot of forwarding momenta, such as in-line skating and skiing
  • Wave an inadequate intake of calcium or vitamin D
  • Football or soccer, especially on artificial turf
  • Rugby
  • Horseback riding
  • Hockey
  • Skiing
  • Snowboarding
  • In-line skating
  • Jumping on a trampoline

Symptoms Of Middle Phalanges Fractures

Common symptoms of radial and phalangeal fractures include

  • Severe pain that might worsen when gripping or squeezing or moving your hand or wrist
  • Swelling
  • Tenderness
  • Bruising
  • Obvious deformity, such as a bent  wrist
  • Pain
  • The wrist hanging in a deformed way
  • Pain, especially when flexing the wrist
  • Deformity of the wrist, causing it to look crooked and bent.
  • Your wrist is in great pain.
  • Your wrist, arm, or hand is numb.
  • Your fingers are pale.
  • Other symptoms include immediate swelling and/or bruising near the fracture, grinding sounds with arm movements and potential numbness, and tingling in the arm/hand.

Diagnosis of Middle Phalanges Fractures

History and Physical

The main component to focus on assessment are

  • History – handedness, occupation, time of injury, place of injury (work-related)
  • Mechanism of injury – magnitude, direction, point of contact, and type of force that caused the trauma
  • Soft tissue damage
  • Finger alignment – cascade, digit scissoring, rotational defect
  • Open vs. Closed
  • Tendon nerve vessel damage – tendon ruptures may accompany dislocations such as the terminal extensor tendon rupture in the distal interphalangeal joint dislocation or a central slip rupture in a proximal interphalangeal joint dislocation. Tendon damage otherwise only usually occurs with associated lacerations or open combined injuries. Nerves and vessels are rarely injured as part of a simple fracture or dislocation but often suffer injury in major open hand trauma.

Radiographs

Diagnostic tests to consider include

  • Radiographs – PA and lateral and oblique
  • CT – rarely needed. May occasionally be helpful in operative planning with complex peri-articular fractures such as pilon fractures at the base of middle phalanx fractures. It can be used to detect foreign bodies like plastic, glass, and wood.
  • Ultrasound – detect objects that lack radiopacity
  • MRI – unclear diagnosis, foreign material, or tumor

Mostly phalangeal fractures are described by location (head, neck, shaft, base) and pattern (transverse, spiral, oblique, comminuted).

Treatment of Middle Phalanges Fractures

Non-Surgical

Treatment available can be broadly

  • Get medical help immediately – If you fall on an outstretched arm, get into a car accident or are hit while playing a sport and feel intense pain in your shoulder area, then get medical care immediately. Phalanx fractures cause significant pain in the front part of your shoulder, closer to the base of your hand. You’ll innately know that something is seriously wrong because you won’t be able to lift your arm up. 
  • Apply ice to your fractured area– After you get home from the hospital phalangeal fractures (regardless if you had surgery or not), you should apply a bag of crushed ice (or something cold) to your injured in order to reduce the swelling and numb the pain. Ice therapy is effective for acute (recent) injuries that involve swelling because it reduces blood flow by constricting local blood vessels. Apply the crushed ice to your clavicle for 15 minutes three to five times daily until the soreness and inflammation eventually fades away
    Lightly exercise after the pain fades – After a couple of weeks when the swelling has subsided and the pain has faded away, remove your arm sling for short periods and carefully move your arm in all different directions. Don’t aggravate the phalangeal fractures so that it hurts, but gently reintroduce movements to the involved joints and muscles. Start cautiously, maybe starting with light calisthenics and then progress to holding light weights (five-pound weights to start).
  • Practice stretching and strengthening exercises – of the fingers, elbow, and shoulder if your doctor recommends them.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for three to five weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)
  • Get a supportive arm sling – Due to their anatomical position, phalangeal fractures can’t be cast like a broken limb can. Instead, a supportive arm sling or “figure-eight” splint is typically used for support and comfort, either immediately after the injury if it’s just a hairline fracture or following surgery, if it’s a complicated fracture. A figure-eight splint wraps around both shoulders and the base of your neck in order to support the injured shoulder and keep it positioned up and back. Sometimes a larger swath of material is wrapped around the sling to keep it closer to your body. You’ll need to wear the sling constantly until there is no pain with arm movements, which takes between two to four weeks for children or four to eight weeks for adults.
  • Get a referral to physical therapy – Once you’ve recovered and able to remove your arm sling splint for good, you’ll likely notice that the muscles surrounding your shoulder and upper chest look smaller and feel weaker. That’s because muscle tissue atrophies without movement. If this occurs, then you’ll need to get a referral for some physical rehabilitation. Rehab can start once you are cleared by your orthopedist, are pain-free, and can perform all the basic arm and shoulder movements. A physiotherapist or athletic trainer can show you specific rehabilitation exercises and stretches to restore your muscle strength, joint movements, and flexibility
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for six to eight weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)

Rest Your Hand

Once you’re discharged from the hospital in an arm sling, your top priority is to rest your shoulder and not further inflame the injury. Of course, the arm sling not only provides support, but it also restricts movement, which is why you should keep it on even during sleep. Avoiding the temptation to move your shoulder and arm will help the bone mend quicker and the pain fades away sooner.
  • Depending on what you do for a living and if the injury is to your dominant side, you may need to take a couple of weeks off work to recuperate.
  • Healing takes between four to six weeks in younger people and up to 12 weeks in the elderly, but it depends on the severity of the radial and phalangeal fractures 
  • Athletes in good health are typically able to resume their sporting activities within two months of breaking they’re depending on the severity of the break and the specific sport.
  • Sleeping on your back (with the sling on) is necessary to keep the pressure off your shoulder and prevent stress.

Eat Nutritiously During Your Recovery

All bones and tissues in the body need certain nutrients in order to heal properly and in a timely manner. Eating a nutritious and balanced diet that includes lots of minerals and vitamins is proven to help heal broken bones of all types, including. Therefore, focus on eating lots of fresh produce (fruits and veggies), whole grains, lean meats, and fish to give your body the building blocks needed to properly repair your. In addition, drink plenty of purified water, milk, and other dairy-based beverages to augment what you eat.

  • Broken bones need ample minerals (calcium, phosphorus, magnesium, boron) and protein to become strong and healthy again.
  • Excellent sources of minerals/protein include dairy products, tofu, beans, broccoli, nuts and seeds, sardines, and salmon.
  • Important vitamins that are needed for bone healing include vitamin C (needed to make collagen), vitamin D (crucial for mineral absorption), and vitamin K (binds calcium to bones and triggers collagen formation).
  • Conversely, don’t consume food or drink that is known to impair bone/tissue healing, such as alcoholic beverages, sodas, most fast food items, and foods made with lots of refined sugars and preservatives.

Follow-Up Care

  • You will need to see your doctor regularly until your fracture heals. During these visits, he or will take x-rays to make sure the bone is healing in a good position. After the bone has healed, you will be able to gradually return to your normal activities.

Breathing Exercise

  • To elevate breathing problems or remove lung congestion if needed.

Medication

The following medications may be considered doctor to relieve acute and immediate pain

Proximal Phalanx Fractures

  • Extraarticular with less than 10 degrees angulation or under 2 mm shortening and no rotational deformity Stable, transverse fracture
    • Dorsal splinting in intrinsic plus position for 3 weeks
    • Buddy taping

Operative

  • Reducible but unstable isolated fractures
    • Closed reduction internal fixation (CRIF)
  • Intra-articular fractures with displacement
    • Open reduction internal fixation (ORIF)

Closed reduction and internal fixation of proximal phalanx shaft fractures can be accomplished longitudinally through the metacarpal phalangeal joint but not the metacarpal head, or just through the metacarpal head. The wires for either of these options are run in a parallel fashion, cross, or run transversely into the phalanx.

Middle Phalanx Fractures

Proximal intra-articular fractures may be comminuted with axial load and considered “pilon” fractures. If the volar portion of the proximal base fracture constitutes approximately 40% of the articular surface, then it carries the majority of the proper collateral ligament insertion. Also, the accessory ligament and volar plate insertions, which make the fracture unstable. Dorsal proximal base fractures may be considered central slip avulsions.

Non-operative

  • Non-displaced
    • Dynamic splinting for 2to 3 weeks

Operative

  • Transverse fractures with greater than 10 degrees angulation or 2 mm shortening or rotationally deformed
    • Closed reduction percutaneous pinning (CRPP) vs. ORIF
  • Irreducible and unstable fractures
    • CRPP vs. ORIF

Distal Phalanx Fractures

Operative 
  • Open fractures – Tuft fracture is considered open in the presence of a nail bed injury. When the seal of the nail plate with the hyponychium has been broken, and the tuft fracture is displaced. This injury represents an open fracture that should receive treatment on the day of injury with debridement, followed by direct nail matrix repair. Stenting of the nail fold may be required to allow for the nail to grow 
  • Volar subluxed mallet finger fractures involving 30% of the articular surface
  • Jersey finger injuries

References

ByRx Harun

Middle Phalanges Fractures – Causes, Symptoms, Treatment

Middle Phalanges Fractures/Phalangeal fractures of the hand are a common injury that presents to the emergency department and clinic. Injuries can occur at the proximal, middle, or distal phalanx. For the vast majority of phalanx fractures, an acceptable reduction is manageable with non-operative treatment. Early intervention is vital to allow healing and return of function.

The phalanges are the bones that make up the fingers of the hand and the toes of the foot. There are 56 phalanges in the human body, with fourteen on each hand and foot. Three phalanges are present on each finger and toe, with the exception of the thumb and large toe, which possess only two. The middle and far phalanges of the fourth and fifth toes are often fused together (symphalangism).[rx] The phalanges of the hand are commonly known as the finger bones. The phalanges of the foot differ from the hand in that they are often shorter and more compressed, especially in the proximal phalanges, those closest to the torso.

Phalangeal fractures

Anatomy of Middle Phalanges Fractures

The proximal and middle phalanges of the hand all possess a head, neck, shaft, and base. The distal phalanx divides into the tuft, shaft, and base. The proximal phalanx receives stabilization from the surrounding anatomy, including proper and accessory collateral ligaments, volar plate, and extensor/flexor tendons. The middle phalanx has two main insertions: the central slip (extensor mechanism) and the flexor digitorum superficialis (FDS). The distal phalanx anatomy includes distal interphalangeal joint (DIPJ), which is enveloped by the extensor and flexor tendons along with the volar plate and collateral ligaments. The flexor digitorum profundus (FDP) inserts at the volar metaphysis of the distal phalanx. At proximal interphalangeal joint (PIPJ), the flexor digitorum profundus and the flexor digitorum superficialis are within one sheath. The flexor digitorum superficialis is volar, and the flexor digitorum profundus is dorsal. As the tendons transverse the PIPJ the flexor digitorum superficialis bifurcates into two slips that form the Camper’s chiasm which inserts on the volar aspect of the middle phalanx. This important anatomic relationship that can lead to a swan neck deformity (a hyperextended PIPJ and flexed DIPJ).

Pathophysiology

Phalanx fractures displace according to the level at which the fracture occurs due to the eloquent soft tissue and tendon involvement of the phalanx.

Distal Phalanx

Distal phalanx fractures are usually nondisplaced or comminuted fractures. They classify into tuft (tip), shaft, or articular injuries.

  • Tuft fractures usually result from a crushing mechanism such as hitting the tip of a finger with a hammer. A tuft fracture is frequently an open fracture due to its common association with injury to the surrounding soft tissues or nail bed. Even without surrounding soft tissue injury, the fracture is considered open in the presence of a nail bed injury.
  • Shaft fractures
  • Intra-articular fractures are associated with extensor tendon avulsion (Mallet’s finger) or flexor digitorum profundus tendon avulsion (Jersey’s finger).
    • Mallet finger

      • The traumatic loss of the terminal extension at the level of the DIPJ
    • Jersey Finger

      • Hyperextension injury with avulsion of flexor digitorum profundus

Middle Phalanx

Middle phalanx fractures occur in an apex dorsal or volar angulation depending on location. Apex dorsal angulation results from the fracture occurring proximal to the flexor digitorum superficialis (FDS) insertion so that the fragment becomes displaced by the pull of the central slip. Apex volar angulation occurs if the fracture is distal to the flexor digitorum superficialis insertion. A fracture through the middle third may angulate in either direction or not at all as a result of the inherent stability provided by an intact and prolonged flexor digitorum superficialis insertion. 

Proximal Phalanx

Proximal phalanx fractures occur in an apex volar angulation (dorsal angulation). The proximal fragment flexes due to interossei, and the distal phalanx extends due to the central slip.

Causes Of Middle Phalanges Fractures

Colles’ fracture

  • Injury to the phalanges – occurs with direct, blunt trauma, penetrating trauma, and crush injuries.
  • Sudden forceful  fall down
  • Road traffic accident
  • Falls – Falling onto an outstretched hand is one of the most common causes of broken and fractures.
  • Sports injuries – Many fractures occur during contact sports or sports in which you might fall onto an outstretched hand — such as in-line skating or snowboarding.
  • Motor vehicle crashes – Motor vehicle crashes can cause wrist bones to break, sometimes into many pieces, and often require surgical repair.
  • Have osteoporosis –  a disease that weakens your bones
  • Eave low muscle mass or poor muscle strength – or lack agility and have poor balance (these conditions make you more likely to fall)
  • Walk or do other activities in the snow or on the ice – or do activities that require a lot of forwarding momenta, such as in-line skating and skiing
  • Wave an inadequate intake of calcium or vitamin D
  • Football or soccer, especially on artificial turf
  • Rugby
  • Horseback riding
  • Hockey
  • Skiing
  • Snowboarding
  • In-line skating
  • Jumping on a trampoline

Symptoms Of Middle Phalanges Fractures

Common symptoms of radial and phalangeal fractures include

  • Severe pain that might worsen when gripping or squeezing or moving your hand or wrist
  • Swelling
  • Tenderness
  • Bruising
  • Obvious deformity, such as a bent  wrist
  • Pain
  • The wrist hanging in a deformed way
  • Pain, especially when flexing the wrist
  • Deformity of the wrist, causing it to look crooked and bent.
  • Your wrist is in great pain.
  • Your wrist, arm, or hand is numb.
  • Your fingers are pale.
  • Other symptoms include immediate swelling and/or bruising near the fracture, grinding sounds with arm movements and potential numbness, and tingling in the arm/hand.

Diagnosis of Middle Phalanges Fractures

History and Physical

The main component to focus on assessment are

  • History – handedness, occupation, time of injury, place of injury (work-related)
  • Mechanism of injury – magnitude, direction, point of contact, and type of force that caused the trauma
  • Soft tissue damage
  • Finger alignment – cascade, digit scissoring, rotational defect
  • Open vs. Closed
  • Tendon nerve vessel damage – tendon ruptures may accompany dislocations such as the terminal extensor tendon rupture in the distal interphalangeal joint dislocation or a central slip rupture in a proximal interphalangeal joint dislocation. Tendon damage otherwise only usually occurs with associated lacerations or open combined injuries. Nerves and vessels are rarely injured as part of a simple fracture or dislocation but often suffer injury in major open hand trauma.

Radiographs

Diagnostic tests to consider include

  • Radiographs – PA and lateral and oblique
  • CT – rarely needed. May occasionally be helpful in operative planning with complex peri-articular fractures such as pilon fractures at the base of middle phalanx fractures. It can be used to detect foreign bodies like plastic, glass, and wood.
  • Ultrasound – detect objects that lack radiopacity
  • MRI – unclear diagnosis, foreign material, or tumor

Mostly phalangeal fractures are described by location (head, neck, shaft, base) and pattern (transverse, spiral, oblique, comminuted).

Treatment of Middle Phalanges Fractures

Non-Surgical

Treatment available can be broadly

  • Get medical help immediately – If you fall on an outstretched arm, get into a car accident or are hit while playing a sport and feel intense pain in your shoulder area, then get medical care immediately. Phalanx fractures cause significant pain in the front part of your shoulder, closer to the base of your hand. You’ll innately know that something is seriously wrong because you won’t be able to lift your arm up. 
  • Apply ice to your fractured area– After you get home from the hospital phalangeal fractures (regardless if you had surgery or not), you should apply a bag of crushed ice (or something cold) to your injured in order to reduce the swelling and numb the pain. Ice therapy is effective for acute (recent) injuries that involve swelling because it reduces blood flow by constricting local blood vessels. Apply the crushed ice to your clavicle for 15 minutes three to five times daily until the soreness and inflammation eventually fades away
    Lightly exercise after the pain fades – After a couple of weeks when the swelling has subsided and the pain has faded away, remove your arm sling for short periods and carefully move your arm in all different directions. Don’t aggravate the phalangeal fractures so that it hurts, but gently reintroduce movements to the involved joints and muscles. Start cautiously, maybe starting with light calisthenics and then progress to holding light weights (five-pound weights to start).
  • Practice stretching and strengthening exercises – of the fingers, elbow, and shoulder if your doctor recommends them.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for three to five weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)
  • Get a supportive arm sling – Due to their anatomical position, phalangeal fractures can’t be cast like a broken limb can. Instead, a supportive arm sling or “figure-eight” splint is typically used for support and comfort, either immediately after the injury if it’s just a hairline fracture or following surgery, if it’s a complicated fracture. A figure-eight splint wraps around both shoulders and the base of your neck in order to support the injured shoulder and keep it positioned up and back. Sometimes a larger swath of material is wrapped around the sling to keep it closer to your body. You’ll need to wear the sling constantly until there is no pain with arm movements, which takes between two to four weeks for children or four to eight weeks for adults.
  • Get a referral to physical therapy – Once you’ve recovered and able to remove your arm sling splint for good, you’ll likely notice that the muscles surrounding your shoulder and upper chest look smaller and feel weaker. That’s because muscle tissue atrophies without movement. If this occurs, then you’ll need to get a referral for some physical rehabilitation. Rehab can start once you are cleared by your orthopedist, are pain-free, and can perform all the basic arm and shoulder movements. A physiotherapist or athletic trainer can show you specific rehabilitation exercises and stretches to restore your muscle strength, joint movements, and flexibility
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for six to eight weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)

Rest Your Hand

Once you’re discharged from the hospital in an arm sling, your top priority is to rest your shoulder and not further inflame the injury. Of course, the arm sling not only provides support, but it also restricts movement, which is why you should keep it on even during sleep. Avoiding the temptation to move your shoulder and arm will help the bone mend quicker and the pain fades away sooner.
  • Depending on what you do for a living and if the injury is to your dominant side, you may need to take a couple of weeks off work to recuperate.
  • Healing takes between four to six weeks in younger people and up to 12 weeks in the elderly, but it depends on the severity of the radial and phalangeal fractures 
  • Athletes in good health are typically able to resume their sporting activities within two months of breaking they’re depending on the severity of the break and the specific sport.
  • Sleeping on your back (with the sling on) is necessary to keep the pressure off your shoulder and prevent stress.

Eat Nutritiously During Your Recovery

All bones and tissues in the body need certain nutrients in order to heal properly and in a timely manner. Eating a nutritious and balanced diet that includes lots of minerals and vitamins is proven to help heal broken bones of all types, including. Therefore, focus on eating lots of fresh produce (fruits and veggies), whole grains, lean meats, and fish to give your body the building blocks needed to properly repair your. In addition, drink plenty of purified water, milk, and other dairy-based beverages to augment what you eat.

  • Broken bones need ample minerals (calcium, phosphorus, magnesium, boron) and protein to become strong and healthy again.
  • Excellent sources of minerals/protein include dairy products, tofu, beans, broccoli, nuts and seeds, sardines, and salmon.
  • Important vitamins that are needed for bone healing include vitamin C (needed to make collagen), vitamin D (crucial for mineral absorption), and vitamin K (binds calcium to bones and triggers collagen formation).
  • Conversely, don’t consume food or drink that is known to impair bone/tissue healing, such as alcoholic beverages, sodas, most fast food items, and foods made with lots of refined sugars and preservatives.

Follow-Up Care

  • You will need to see your doctor regularly until your fracture heals. During these visits, he or will take x-rays to make sure the bone is healing in a good position. After the bone has healed, you will be able to gradually return to your normal activities.

Breathing Exercise

  • To elevate breathing problems or remove lung congestion if needed.

Medication

The following medications may be considered doctor to relieve acute and immediate pain

Proximal Phalanx Fractures

  • Extraarticular with less than 10 degrees angulation or under 2 mm shortening and no rotational deformity Stable, transverse fracture
    • Dorsal splinting in intrinsic plus position for 3 weeks
    • Buddy taping

Operative

  • Reducible but unstable isolated fractures
    • Closed reduction internal fixation (CRIF)
  • Intra-articular fractures with displacement
    • Open reduction internal fixation (ORIF)

Closed reduction and internal fixation of proximal phalanx shaft fractures can be accomplished longitudinally through the metacarpal phalangeal joint but not the metacarpal head, or just through the metacarpal head. The wires for either of these options are run in a parallel fashion, cross, or run transversely into the phalanx.

Middle Phalanx Fractures

Proximal intra-articular fractures may be comminuted with axial load and considered “pilon” fractures. If the volar portion of the proximal base fracture constitutes approximately 40% of the articular surface, then it carries the majority of the proper collateral ligament insertion. Also, the accessory ligament and volar plate insertions, which make the fracture unstable. Dorsal proximal base fractures may be considered central slip avulsions.

Non-operative

  • Non-displaced
    • Dynamic splinting for 2to 3 weeks

Operative

  • Transverse fractures with greater than 10 degrees angulation or 2 mm shortening or rotationally deformed
    • Closed reduction percutaneous pinning (CRPP) vs. ORIF
  • Irreducible and unstable fractures
    • CRPP vs. ORIF

Distal Phalanx Fractures

Operative 
  • Open fractures – Tuft fracture is considered open in the presence of a nail bed injury. When the seal of the nail plate with the hyponychium has been broken, and the tuft fracture is displaced. This injury represents an open fracture that should receive treatment on the day of injury with debridement, followed by direct nail matrix repair. Stenting of the nail fold may be required to allow for the nail to grow 
  • Volar subluxed mallet finger fractures involving 30% of the articular surface
  • Jersey finger injuries

References

ByRx Harun

Distal Phalanx Fractures – Causes, Symptoms, Treatment

Distal Phalanx Fractures/Phalangeal fractures of the hand are a common injury that presents to the emergency department and clinic. Injuries can occur at the proximal, middle, or distal phalanx. For the vast majority of phalanx fractures, an acceptable reduction is manageable with non-operative treatment. Early intervention is vital to allow healing and return of function.

The phalanges are the bones that make up the fingers of the hand and the toes of the foot. There are 56 phalanges in the human body, with fourteen on each hand and foot. Three phalanges are present on each finger and toe, with the exception of the thumb and large toe, which possess only two. The middle and far phalanges of the fourth and fifth toes are often fused together (symphalangism).[rx] The phalanges of the hand are commonly known as the finger bones. The phalanges of the foot differ from the hand in that they are often shorter and more compressed, especially in the proximal phalanges, those closest to the torso.

Phalangeal fractures

Anatomy of Distal Phalanx Fractures

The proximal and middle phalanges of the hand all possess a head, neck, shaft, and base. The distal phalanx divides into the tuft, shaft, and base. The proximal phalanx receives stabilization from the surrounding anatomy, including proper and accessory collateral ligaments, volar plate, and extensor/flexor tendons. The middle phalanx has two main insertions: the central slip (extensor mechanism) and the flexor digitorum superficialis (FDS). The distal phalanx anatomy includes distal interphalangeal joint (DIPJ), which is enveloped by the extensor and flexor tendons along with the volar plate and collateral ligaments. The flexor digitorum profundus (FDP) inserts at the volar metaphysis of the distal phalanx. At proximal interphalangeal joint (PIPJ), the flexor digitorum profundus and the flexor digitorum superficialis are within one sheath. The flexor digitorum superficialis is volar, and the flexor digitorum profundus is dorsal. As the tendons transverse the PIPJ the flexor digitorum superficialis bifurcates into two slips that form the Camper’s chiasm which inserts on the volar aspect of the middle phalanx. This important anatomic relationship that can lead to a swan neck deformity (a hyperextended PIPJ and flexed DIPJ).

Pathophysiology

Phalanx fractures displace according to the level at which the fracture occurs due to the eloquent soft tissue and tendon involvement of the phalanx.

Distal Phalanx

Distal phalanx fractures are usually nondisplaced or comminuted fractures. They classify into tuft (tip), shaft, or articular injuries.

  • Tuft fractures usually result from a crushing mechanism such as hitting the tip of a finger with a hammer. A tuft fracture is frequently an open fracture due to its common association with injury to the surrounding soft tissues or nail bed. Even without surrounding soft tissue injury, the fracture is considered open in the presence of a nail bed injury.
  • Shaft fractures
  • Intra-articular fractures are associated with extensor tendon avulsion (Mallet’s finger) or flexor digitorum profundus tendon avulsion (Jersey’s finger).
    • Mallet finger

      • The traumatic loss of the terminal extension at the level of the DIPJ
    • Jersey Finger

      • Hyperextension injury with avulsion of flexor digitorum profundus

Middle Phalanx

Middle phalanx fractures occur in an apex dorsal or volar angulation depending on location. Apex dorsal angulation results from the fracture occurring proximal to the flexor digitorum superficialis (FDS) insertion so that the fragment becomes displaced by the pull of the central slip. Apex volar angulation occurs if the fracture is distal to the flexor digitorum superficialis insertion. A fracture through the middle third may angulate in either direction or not at all as a result of the inherent stability provided by an intact and prolonged flexor digitorum superficialis insertion. 

Proximal Phalanx

Proximal phalanx fractures occur in an apex volar angulation (dorsal angulation). The proximal fragment flexes due to interossei, and the distal phalanx extends due to the central slip.

Causes Of Distal Phalanx Fractures

Colles’ fracture

  • Injury to the phalanges – occurs with direct, blunt trauma, penetrating trauma, and crush injuries.
  • Sudden forceful  fall down
  • Road traffic accident
  • Falls – Falling onto an outstretched hand is one of the most common causes of broken and fractures.
  • Sports injuries – Many fractures occur during contact sports or sports in which you might fall onto an outstretched hand — such as in-line skating or snowboarding.
  • Motor vehicle crashes – Motor vehicle crashes can cause wrist bones to break, sometimes into many pieces, and often require surgical repair.
  • Have osteoporosis –  a disease that weakens your bones
  • Eave low muscle mass or poor muscle strength – or lack agility and have poor balance (these conditions make you more likely to fall)
  • Walk or do other activities in the snow or on the ice – or do activities that require a lot of forwarding momenta, such as in-line skating and skiing
  • Wave an inadequate intake of calcium or vitamin D
  • Football or soccer, especially on artificial turf
  • Rugby
  • Horseback riding
  • Hockey
  • Skiing
  • Snowboarding
  • In-line skating
  • Jumping on a trampoline

Symptoms Of Distal Phalanx Fractures

Common symptoms of radial and phalangeal fractures include

  • Severe pain that might worsen when gripping or squeezing or moving your hand or wrist
  • Swelling
  • Tenderness
  • Bruising
  • Obvious deformity, such as a bent  wrist
  • Pain
  • The wrist hanging in a deformed way
  • Pain, especially when flexing the wrist
  • Deformity of the wrist, causing it to look crooked and bent.
  • Your wrist is in great pain.
  • Your wrist, arm, or hand is numb.
  • Your fingers are pale.
  • Other symptoms include immediate swelling and/or bruising near the fracture, grinding sounds with arm movements and potential numbness, and tingling in the arm/hand.

Diagnosis of Distal Phalanx Fractures

History and Physical

The main component to focus on assessment are:

  • History – handedness, occupation, time of injury, place of injury (work-related)
  • Mechanism of injury – magnitude, direction, point of contact, and type of force that caused the trauma
  • Soft tissue damage
  • Finger alignment – cascade, digit scissoring, rotational defect
  • Open vs. Closed
  • Tendon nerve vessel damage – tendon ruptures may accompany dislocations such as the terminal extensor tendon rupture in the distal interphalangeal joint dislocation or a central slip rupture in a proximal interphalangeal joint dislocation. Tendon damage otherwise only usually occurs with associated lacerations or open combined injuries. Nerves and vessels are rarely injured as part of a simple fracture or dislocation but often suffer injury in major open hand trauma.

Radiographs

Diagnostic tests to consider include:

  • Radiographs – PA and lateral and oblique
  • CT – rarely needed. May occasionally be helpful in operative planning with complex peri-articular fractures such as pilon fractures at the base of middle phalanx fractures. It can be used to detect foreign bodies like plastic, glass, and wood.
  • Ultrasound – detect objects that lack radiopacity
  • MRI – unclear diagnosis, foreign material, or tumor

Mostly phalangeal fractures are described by location (head, neck, shaft, base) and pattern (transverse, spiral, oblique, comminuted).

Treatment of Distal Phalanx Fractures

Non-Surgical

Treatment available can be broadly

  • Get medical help immediately – If you fall on an outstretched arm, get into a car accident or are hit while playing a sport and feel intense pain in your shoulder area, then get medical care immediately. Phalanx fractures cause significant pain in the front part of your shoulder, closer to the base of your hand. You’ll innately know that something is seriously wrong because you won’t be able to lift your arm up. 
  • Apply ice to your fractured area– After you get home from the hospital phalangeal fractures (regardless if you had surgery or not), you should apply a bag of crushed ice (or something cold) to your injured in order to reduce the swelling and numb the pain. Ice therapy is effective for acute (recent) injuries that involve swelling because it reduces blood flow by constricting local blood vessels. Apply the crushed ice to your clavicle for 15 minutes three to five times daily until the soreness and inflammation eventually fades away
    Lightly exercise after the pain fades – After a couple of weeks when the swelling has subsided and the pain has faded away, remove your arm sling for short periods and carefully move your arm in all different directions. Don’t aggravate the phalangeal fractures so that it hurts, but gently reintroduce movements to the involved joints and muscles. Start cautiously, maybe starting with light calisthenics and then progress to holding light weights (five-pound weights to start).
  • Practice stretching and strengthening exercises – of the fingers, elbow, and shoulder if your doctor recommends them.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for three to five weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)
  • Get a supportive arm sling – Due to their anatomical position, phalangeal fractures can’t be cast like a broken limb can. Instead, a supportive arm sling or “figure-eight” splint is typically used for support and comfort, either immediately after the injury if it’s just a hairline fracture or following surgery, if it’s a complicated fracture. A figure-eight splint wraps around both shoulders and the base of your neck in order to support the injured shoulder and keep it positioned up and back. Sometimes a larger swath of material is wrapped around the sling to keep it closer to your body. You’ll need to wear the sling constantly until there is no pain with arm movements, which takes between two to four weeks for children or four to eight weeks for adults.
  • Get a referral to physical therapy – Once you’ve recovered and able to remove your arm sling splint for good, you’ll likely notice that the muscles surrounding your shoulder and upper chest look smaller and feel weaker. That’s because muscle tissue atrophies without movement. If this occurs, then you’ll need to get a referral for some physical rehabilitation. Rehab can start once you are cleared by your orthopedist, are pain-free, and can perform all the basic arm and shoulder movements. A physiotherapist or athletic trainer can show you specific rehabilitation exercises and stretches to restore your muscle strength, joint movements, and flexibility
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for six to eight weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)

Rest Your Hand

Once you’re discharged from the hospital in an arm sling, your top priority is to rest your shoulder and not further inflame the injury. Of course, the arm sling not only provides support, but it also restricts movement, which is why you should keep it on even during sleep. Avoiding the temptation to move your shoulder and arm will help the bone mend quicker and the pain fades away sooner.
  • Depending on what you do for a living and if the injury is to your dominant side, you may need to take a couple of weeks off work to recuperate.
  • Healing takes between four to six weeks in younger people and up to 12 weeks in the elderly, but it depends on the severity of the radial and phalangeal fractures 
  • Athletes in good health are typically able to resume their sporting activities within two months of breaking they’re depending on the severity of the break and the specific sport.
  • Sleeping on your back (with the sling on) is necessary to keep the pressure off your shoulder and prevent stress.

Eat Nutritiously During Your Recovery

All bones and tissues in the body need certain nutrients in order to heal properly and in a timely manner. Eating a nutritious and balanced diet that includes lots of minerals and vitamins is proven to help heal broken bones of all types, including. Therefore, focus on eating lots of fresh produce (fruits and veggies), whole grains, lean meats, and fish to give your body the building blocks needed to properly repair your. In addition, drink plenty of purified water, milk, and other dairy-based beverages to augment what you eat.

  • Broken bones need ample minerals (calcium, phosphorus, magnesium, boron) and protein to become strong and healthy again.
  • Excellent sources of minerals/protein include dairy products, tofu, beans, broccoli, nuts and seeds, sardines, and salmon.
  • Important vitamins that are needed for bone healing include vitamin C (needed to make collagen), vitamin D (crucial for mineral absorption), and vitamin K (binds calcium to bones and triggers collagen formation).
  • Conversely, don’t consume food or drink that is known to impair bone/tissue healing, such as alcoholic beverages, sodas, most fast food items, and foods made with lots of refined sugars and preservatives.

Follow-Up Care

  • You will need to see your doctor regularly until your fracture heals. During these visits, he or will take x-rays to make sure the bone is healing in a good position. After the bone has healed, you will be able to gradually return to your normal activities.

Breathing Exercise

  • To elevate breathing problems or remove lung congestion if needed.

Medication

The following medications may be considered doctor to relieve acute and immediate pain

Proximal Phalanx Fractures

  • Extraarticular with less than 10 degrees angulation or under 2 mm shortening and no rotational deformity Stable, transverse fracture
    • Dorsal splinting in intrinsic plus position for 3 weeks
    • Buddy taping

Operative

  • Reducible but unstable isolated fractures
    • Closed reduction internal fixation (CRIF)
  • Intra-articular fractures with displacement
    • Open reduction internal fixation (ORIF)

Closed reduction and internal fixation of proximal phalanx shaft fractures can be accomplished longitudinally through the metacarpal phalangeal joint but not the metacarpal head, or just through the metacarpal head. The wires for either of these options are run in a parallel fashion, cross, or run transversely into the phalanx.

Middle Phalanx Fractures

Proximal intra-articular fractures may be comminuted with axial load and considered “pilon” fractures. If the volar portion of the proximal base fracture constitutes approximately 40% of the articular surface, then it carries the majority of the proper collateral ligament insertion. Also, the accessory ligament and volar plate insertions, which make the fracture unstable. Dorsal proximal base fractures may be considered central slip avulsions.

Non-operative

  • Non-displaced
    • Dynamic splinting for 2to 3 weeks

Operative

  • Transverse fractures with greater than 10 degrees angulation or 2 mm shortening or rotationally deformed
    • Closed reduction percutaneous pinning (CRPP) vs. ORIF
  • Irreducible and unstable fractures
    • CRPP vs. ORIF

Distal Phalanx Fractures

Operative 
  • Open fractures – Tuft fracture is considered open in the presence of a nail bed injury. When the seal of the nail plate with the hyponychium has been broken, and the tuft fracture is displaced. This injury represents an open fracture that should receive treatment on the day of injury with debridement, followed by direct nail matrix repair. Stenting of the nail fold may be required to allow for the nail to grow 
  • Volar subluxed mallet finger fractures involving 30% of the articular surface
  • Jersey finger injuries

References

ByRx Harun

Phalanx Fracture – Causes, Symptoms, Diagnosis, Treatment

Phalangeal fractures of the hand are a common injury that presents to the emergency department and clinic. Injuries can occur at the proximal, middle, or distal phalanx. For the vast majority of phalanx fractures, an acceptable reduction is manageable with non-operative treatment. Early intervention is vital to allow healing and return of function.

The phalanges are the bones that make up the fingers of the hand and the toes of the foot. There are 56 phalanges in the human body, with fourteen on each hand and foot. Three phalanges are present on each finger and toe, with the exception of the thumb and large toe, which possess only two. The middle and far phalanges of the fourth and fifth toes are often fused together (symphalangism).[rx] The phalanges of the hand are commonly known as the finger bones. The phalanges of the foot differ from the hand in that they are often shorter and more compressed, especially in the proximal phalanges, those closest to the torso.

Phalangeal fractures

Anatomy

The proximal and middle phalanges of the hand all possess a head, neck, shaft, and base. The distal phalanx divides into the tuft, shaft, and base. The proximal phalanx receives stabilization from the surrounding anatomy, including proper and accessory collateral ligaments, volar plate, and extensor/flexor tendons. The middle phalanx has two main insertions: the central slip (extensor mechanism) and the flexor digitorum superficialis (FDS). The distal phalanx anatomy includes distal interphalangeal joint (DIPJ), which is enveloped by the extensor and flexor tendons along with the volar plate and collateral ligaments. The flexor digitorum profundus (FDP) inserts at the volar metaphysis of the distal phalanx. At proximal interphalangeal joint (PIPJ), the flexor digitorum profundus and the flexor digitorum superficialis are within one sheath. The flexor digitorum superficialis is volar, and the flexor digitorum profundus is dorsal. As the tendons transverse the PIPJ the flexor digitorum superficialis bifurcates into two slips that form the Camper’s chiasm which inserts on the volar aspect of the middle phalanx. This important anatomic relationship that can lead to a swan neck deformity (a hyperextended PIPJ and flexed DIPJ).

Pathophysiology

Phalanx fractures displace according to the level at which the fracture occurs due to the eloquent soft tissue and tendon involvement of the phalanx.

Distal Phalanx

Distal phalanx fractures are usually nondisplaced or comminuted fractures. They classify into tuft (tip), shaft, or articular injuries.

  • Tuft fractures usually result from a crushing mechanism such as hitting the tip of a finger with a hammer. A tuft fracture is frequently an open fracture due to its common association with injury to the surrounding soft tissues or nail bed. Even without surrounding soft tissue injury, the fracture is considered open in the presence of a nail bed injury.
  • Shaft fractures
  • Intra-articular fractures are associated with extensor tendon avulsion (Mallet’s finger) or flexor digitorum profundus tendon avulsion (Jersey’s finger).
    • Mallet finger

      • The traumatic loss of the terminal extension at the level of the DIPJ
    • Jersey Finger

      • Hyperextension injury with avulsion of flexor digitorum profundus

Middle Phalanx

Middle phalanx fractures occur in an apex dorsal or volar angulation depending on location. Apex dorsal angulation results from the fracture occurring proximal to the flexor digitorum superficialis (FDS) insertion so that the fragment becomes displaced by the pull of the central slip. Apex volar angulation occurs if the fracture is distal to the flexor digitorum superficialis insertion. A fracture through the middle third may angulate in either direction or not at all as a result of the inherent stability provided by an intact and prolonged flexor digitorum superficialis insertion. 

Proximal Phalanx

Proximal phalanx fractures occur in an apex volar angulation (dorsal angulation). The proximal fragment flexes due to interossei, and the distal phalanx extends due to the central slip.

Causes Of Phalanx Fracture

Colles’ fracture

  • Injury to the phalanges – occurs with direct, blunt trauma, penetrating trauma, and crush injuries.
  • Sudden forceful  fall down
  • Road traffic accident
  • Falls – Falling onto an outstretched hand is one of the most common causes of broken and fractures.
  • Sports injuries – Many fractures occur during contact sports or sports in which you might fall onto an outstretched hand — such as in-line skating or snowboarding.
  • Motor vehicle crashes – Motor vehicle crashes can cause wrist bones to break, sometimes into many pieces, and often require surgical repair.
  • Have osteoporosis –  a disease that weakens your bones
  • Eave low muscle mass or poor muscle strength – or lack agility and have poor balance (these conditions make you more likely to fall)
  • Walk or do other activities in the snow or on the ice – or do activities that require a lot of forwarding momenta, such as in-line skating and skiing
  • Wave an inadequate intake of calcium or vitamin D
  • Football or soccer, especially on artificial turf
  • Rugby
  • Horseback riding
  • Hockey
  • Skiing
  • Snowboarding
  • In-line skating
  • Jumping on a trampoline

Symptoms Of Phalanx Fracture

Common symptoms of radial and phalangeal fractures include:

  • Severe pain that might worsen when gripping or squeezing or moving your hand or wrist
  • Swelling
  • Tenderness
  • Bruising
  • Obvious deformity, such as a bent  wrist
  • Pain
  • The wrist hanging in a deformed way
  • Pain, especially when flexing the wrist
  • Deformity of the wrist, causing it to look crooked and bent.
  • Your wrist is in great pain.
  • Your wrist, arm, or hand is numb.
  • Your fingers are pale.
  • Other symptoms include immediate swelling and/or bruising near the fracture, grinding sounds with arm movements and potential numbness, and tingling in the arm/hand.

Diagnosis of Phalanx Fracture

History and Physical

The main component to focus on assessment are:

  • History – handedness, occupation, time of injury, place of injury (work-related)
  • Mechanism of injury – magnitude, direction, point of contact, and type of force that caused the trauma
  • Soft tissue damage
  • Finger alignment – cascade, digit scissoring, rotational defect
  • Open vs. Closed
  • Tendon nerve vessel damage – tendon ruptures may accompany dislocations such as the terminal extensor tendon rupture in the distal interphalangeal joint dislocation or a central slip rupture in a proximal interphalangeal joint dislocation. Tendon damage otherwise only usually occurs with associated lacerations or open combined injuries. Nerves and vessels are rarely injured as part of a simple fracture or dislocation but often suffer injury in major open hand trauma.

Radiographs

Diagnostic tests to consider include:

  • Radiographs – PA and lateral and oblique
  • CT – rarely needed. May occasionally be helpful in operative planning with complex peri-articular fractures such as pilon fractures at the base of middle phalanx fractures. It can be used to detect foreign bodies like plastic, glass, and wood.
  • Ultrasound – detect objects that lack radiopacity
  • MRI – unclear diagnosis, foreign material, or tumor

Mostly phalangeal fractures are described by location (head, neck, shaft, base) and pattern (transverse, spiral, oblique, comminuted).

Treatment of Phalanx Fracture

Non-Surgical

Treatment available can be broadly

  • Get medical help immediately – If you fall on an outstretched arm, get into a car accident or are hit while playing a sport and feel intense pain in your shoulder area, then get medical care immediately. Phalanx fractures cause significant pain in the front part of your shoulder, closer to the base of your hand. You’ll innately know that something is seriously wrong because you won’t be able to lift your arm up. 
  • Apply ice to your fractured area– After you get home from the hospital phalangeal fractures (regardless if you had surgery or not), you should apply a bag of crushed ice (or something cold) to your injured in order to reduce the swelling and numb the pain. Ice therapy is effective for acute (recent) injuries that involve swelling because it reduces blood flow by constricting local blood vessels. Apply the crushed ice to your clavicle for 15 minutes three to five times daily until the soreness and inflammation eventually fades away
    Lightly exercise after the pain fades – After a couple of weeks when the swelling has subsided and the pain has faded away, remove your arm sling for short periods and carefully move your arm in all different directions. Don’t aggravate the phalangeal fractures so that it hurts, but gently reintroduce movements to the involved joints and muscles. Start cautiously, maybe starting with light calisthenics and then progress to holding light weights (five-pound weights to start).
  • Practice stretching and strengthening exercises – of the fingers, elbow, and shoulder if your doctor recommends them.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for three to five weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)
  • Get a supportive arm sling – Due to their anatomical position, phalangeal fractures can’t be cast like a broken limb can. Instead, a supportive arm sling or “figure-eight” splint is typically used for support and comfort, either immediately after the injury if it’s just a hairline fracture or following surgery, if it’s a complicated fracture. A figure-eight splint wraps around both shoulders and the base of your neck in order to support the injured shoulder and keep it positioned up and back. Sometimes a larger swath of material is wrapped around the sling to keep it closer to your body. You’ll need to wear the sling constantly until there is no pain with arm movements, which takes between two to four weeks for children or four to eight weeks for adults.
  • Get a referral to physical therapy – Once you’ve recovered and able to remove your arm sling splint for good, you’ll likely notice that the muscles surrounding your shoulder and upper chest look smaller and feel weaker. That’s because muscle tissue atrophies without movement. If this occurs, then you’ll need to get a referral for some physical rehabilitation. Rehab can start once you are cleared by your orthopedist, are pain-free, and can perform all the basic arm and shoulder movements. A physiotherapist or athletic trainer can show you specific rehabilitation exercises and stretches to restore your muscle strength, joint movements, and flexibility
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for six to eight weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)

Rest Your Hand

Once you’re discharged from the hospital in an arm sling, your top priority is to rest your shoulder and not further inflame the injury. Of course, the arm sling not only provides support, but it also restricts movement, which is why you should keep it on even during sleep. Avoiding the temptation to move your shoulder and arm will help the bone mend quicker and the pain fades away sooner.
  • Depending on what you do for a living and if the injury is to your dominant side, you may need to take a couple of weeks off work to recuperate.
  • Healing takes between four to six weeks in younger people and up to 12 weeks in the elderly, but it depends on the severity of the radial and phalangeal fractures 
  • Athletes in good health are typically able to resume their sporting activities within two months of breaking they’re depending on the severity of the break and the specific sport.
  • Sleeping on your back (with the sling on) is necessary to keep the pressure off your shoulder and prevent stress.

Eat Nutritiously During Your Recovery

All bones and tissues in the body need certain nutrients in order to heal properly and in a timely manner. Eating a nutritious and balanced diet that includes lots of minerals and vitamins is proven to help heal broken bones of all types, including. Therefore, focus on eating lots of fresh produce (fruits and veggies), whole grains, lean meats, and fish to give your body the building blocks needed to properly repair your. In addition, drink plenty of purified water, milk, and other dairy-based beverages to augment what you eat.

  • Broken bones need ample minerals (calcium, phosphorus, magnesium, boron) and protein to become strong and healthy again.
  • Excellent sources of minerals/protein include dairy products, tofu, beans, broccoli, nuts and seeds, sardines, and salmon.
  • Important vitamins that are needed for bone healing include vitamin C (needed to make collagen), vitamin D (crucial for mineral absorption), and vitamin K (binds calcium to bones and triggers collagen formation).
  • Conversely, don’t consume food or drink that is known to impair bone/tissue healing, such as alcoholic beverages, sodas, most fast food items, and foods made with lots of refined sugars and preservatives.

Follow-Up Care

  • You will need to see your doctor regularly until your fracture heals. During these visits, he or will take x-rays to make sure the bone is healing in a good position. After the bone has healed, you will be able to gradually return to your normal activities.

Breathing Exercise

  • To elevate breathing problems or remove lung congestion if needed.

Medication

The following medications may be considered doctor to relieve acute and immediate pain

Proximal Phalanx Fractures

  • Extraarticular with less than 10 degrees angulation or under 2 mm shortening and no rotational deformity Stable, transverse fracture
    • Dorsal splinting in intrinsic plus position for 3 weeks
    • Buddy taping

Operative

  • Reducible but unstable isolated fractures
    • Closed reduction internal fixation (CRIF)
  • Intra-articular fractures with displacement
    • Open reduction internal fixation (ORIF)

Closed reduction and internal fixation of proximal phalanx shaft fractures can be accomplished longitudinally through the metacarpal phalangeal joint but not the metacarpal head, or just through the metacarpal head. The wires for either of these options are run in a parallel fashion, cross, or run transversely into the phalanx.

Middle Phalanx Fractures

Proximal intra-articular fractures may be comminuted with axial load and considered “pilon” fractures. If the volar portion of the proximal base fracture constitutes approximately 40% of the articular surface, then it carries the majority of the proper collateral ligament insertion. Also, the accessory ligament and volar plate insertions, which make the fracture unstable. Dorsal proximal base fractures may be considered central slip avulsions.

Non-operative

  • Non-displaced
    • Dynamic splinting for 2to 3 weeks

Operative

  • Transverse fractures with greater than 10 degrees angulation or 2 mm shortening or rotationally deformed
    • Closed reduction percutaneous pinning (CRPP) vs. ORIF
  • Irreducible and unstable fractures
    • CRPP vs. ORIF

Distal Phalanx Fractures

Operative 
  • Open fractures – Tuft fracture is considered open in the presence of a nail bed injury. When the seal of the nail plate with the hyponychium has been broken, and the tuft fracture is displaced. This injury represents an open fracture that should receive treatment on the day of injury with debridement, followed by direct nail matrix repair. Stenting of the nail fold may be required to allow for the nail to grow 
  • Volar subluxed mallet finger fractures involving 30% of the articular surface
  • Jersey finger injuries

References

Translate »