Category Archive Fracture of Bone A-Z

By

Radial Neck Fractures, Causes, Diagnosis, Treatment

Radial Neck Fractures/Radial head fractures represent approximately one-third of elbow fractures and 1% to 4% of fractures in adults. A few years ago, the radial head was considered of little importance in the elbow anatomy and biomechanics, so its excision was frequently indicated. Laboratory studies and long-term series outcomes have shown the undesirable consequences of this method. Associated injuries usually determine treatment and outcomes.[rx]

Radial head fractures

Anatomy Radial Head Fractures

A 180-degree arch in the pronation and supination is allowed by the articulation of the proximal end of the radius with the distal humerus (capitulum), and with the ulna in the lesser sigmoid cup (trochoid joint). Cartilage covers the radial head except for the anterolateral third that lacks subchondral bone, and it is easily fractured. It has a 40-degree central cavity, and it is oval-size-like. The head and neck are not collinear with the diaphysis and complete a 15-degree offset angle. They are closely related to the lateral ligament complex, mainly the annular ligament and radial collateral ligament.[rx]

The physiologic elbow range of movement is zero to 150 degrees of flexion and extension, and  85 degrees of pronation and  75 degrees of supination.[rx]

The radial head stabilizes in valgus when the internal ligament complex is injured, and it does not take part when being harmless (secondary stabilizer). Moreover, it is involved in longitudinal stability. [rx]

Causes of Radial Head Fractures

Colles’ fracture

  • Sudden forceful  fall down
  • Road traffic accident
  • Falls – Falling onto an outstretched hand is one of the most common causes of broken radial head fractures.
  • Sports injuries – Many radials and radial head fractures occur during contact sports or sports in which you might fall onto an outstretched hand — such as in-line skating or snowboarding.
  • Motor vehicle crashes – Motor vehicle crashes can cause radial head fractures to break, sometimes into many pieces, and often require surgical repair.
  • Have osteoporosis –  a disease that weakens your bones
  • Eave low muscle mass or poor muscle strength – or lack agility and have poor balance (these conditions make you more likely to fall)
  • Walk or do other activities in snow or on the ice – or do activities that require a lot of forwarding momenta, such as in-line skating and skiing
  • Wave an inadequate intake of calcium or vitamin D
  • Football or soccer, especially on artificial turf
  • Rugby
  • Horseback riding
  • Hockey
  • Skiing
  • Snowboarding
  • In-line skating
  • Jumping on a trampoline

Symptoms of Radial Head Fractures

Common symptoms of  radial head fractures include:

  • Severe pain that might worsen when gripping or squeezing or moving your hand or wrist
  • Swelling
  • Tenderness
  • Bruising
  • Obvious deformity, such as a bent wrist
  • Pain
  • The wrist hanging in a deformed way
  • Pain, especially when flexing the wrist
  • Deformity of the wrist, causing it to look crooked and bent.
  • Your wrist is in great pain.
  • Your wrist, arm, or hand is numb.
  • Your fingers are pale.

Diagnosis of Radial Head Fractures

Diagnosis can be made upon the interpretation of anteroposterior and lateral views alone.[rx]

The classic radial head fractures have the following characteristics:[rx]

  • Transverse fracture of the radial and ulnar shaft fractures
  • dorsal displacement and dorsal angulation, together with radial tilt[rx]

Other characteristics[rx][rx]

  • Radial shortening
  • Loss of ulnar inclination≤
  • Radial angulation of the wrist
  • Comminution at the fracture site
  • Associated fracture of the ulnar styloid process in more than 60% of cases.

Differential Diagnosis/ Associated Injuries

  • Scapholunate ligament tear
  • Median nerve injury
  • TFCC (triangular fibrocartilage complex) injury, up to 50% when ulnar styloid fx also present
  • Carpal ligament injury – Scapholunate Instability(most common), lunotriquetral ligament
  • Tendon injury, attritional EPL rupture, usually treated with EIP tendon transfer
  • Compartment syndrome
  • Ulnar styloid fracture
  • DRUJ (Distal Radial Ulnar Joint) Instability
  • Galeazzi Fracture: highly associated with distal 1/3 radial shaft fractures[rx]
X-ray of a displaced intra-articular radial head fractures in an external fixator – The articular surface is widely displaced and irregular. Diagnosis may be evident clinically when the radial head fractures are deformed but should be confirmed by X-ray. The differential diagnosis includes scaphoid fractures and wrist dislocations, which can also co-exist with radial head fractures. Occasionally, fractures may not be seen on X-rays immediately after the injury. Delayed X-rays, X-ray computed tomography (CT scan), or Magnetic resonance imaging[rx] (MRI) can confirm the diagnosis.

Medical Imaging

  • Fracture with a dorsal tilt – Dorsal is left, and volar is right in the image.
  • X-ray of the affected wrist is required if a fracture is suspected. Posteroanterior, lateral, and oblique views can be used together to describe the fracture.[rx] X-ray of the uninjured wrist should also be taken to determine if any normal anatomic variations exist before surgery.[rx]
  • A CT scan is often performed to further investigate the articular anatomy of the fracture, especially for fracture and displacement within the distal radio-ulnar joint.[rx]

Various kinds of information can be obtained from X-rays of the wrist:[rx]

Lateral view

  • Carpal malalignment – A line is drawn along the long axis of the capitate bone and another line is drawn along the long axis of the radius. If the carpal bones are aligned, both lines will intersect within the carpal bones. If the carpal bones are not aligned, both lines will intersect outside the carpal bones. Carpal malignment is frequently associated with a dorsal or volar tilt of the radius and will have poor grip strength and poor forearm rotation.[rx]
  • Teardrop angle – It is the angle between the line that passes through the central axis of the volar rim of the lunate facet of the radius and the line that pass through the long axis of the radius. Teardrop angle less than 45 degrees indicates the displacement of the lunate facet.[rx]
  • Anteroposterior distance (AP distance) – Seen on lateral X-ray, it is the distance between the dorsal and volar rim of the lunate facet of the radius. The usual distance is 19 mm.[rx] Increased AP distance indicates the lunate facet fracture.[rx]
  • Volar or dorsal tilt – A line is drawn joining the most distal ends of the volar and dorsal side of the radius. Another line perpendicular to the longitudinal axis of the radius is drawn. The angle between the two lines is the angle of volar or dorsal tilt of the wrist. Measurement of volar or dorsal tilt should be made in true lateral view of the wrist because pronation of the forearm reduces the volar tilt and supination increases it. When the dorsal tilt is more than 11 degrees, it is associated with loss of grip strength and loss of wrist flexion.[rx]

Posteroanterior view

  • Radial inclination – It is the angle between a line drawn from the radial head fractures to the medial end of the articular surface of the radius and a line drawn perpendicular to the long axis of the radius. Loss of radial inclination is associated with loss of grip strength.[rx]
  • Radial length – It is the vertical distance in millimeters between a line tangential to the articular surface of the ulna and a tangential line drawn at the most distal point of radius (radial styloid). [rx]
  • Ulnar variance – It is the vertical distance between a horizontal line parallel to the articular surface of the radius and another horizontal line drawn parallel to the articular surface of the ulnar head. Positive ulnar variance (ulna appears longer than radius) disturbs the integrity of triangular fibrocartilage complex and is associated with loss of grip strength and wrist pain.[rx]

Oblique view

  • Pronated oblique view of the distal radius helps to show the degree of comminution of the radial and ulnar shaft fractures, depression of the radial styloid and confirming the position the screws at the radial side of the distal end radius. Meanwhile, a supinated oblique view of shows the ulnar side of the distal radius, accessing the depression of dorsal rim of the lunate facet, and the position of the screws on the ulnar side of the distal end radius.[rx]

Treatment of Radial Head Fractures

Non-Surgical

Treatment available can be broadly

  • Get medical help immediately – If you fall on an outstretched arm, get into a car accident or are hit while playing a sport and feel intense pain in your shoulder area, then get medical care immediately. Radial head fractures cause significant pain in the front part of your shoulder, closer to the base of your neck. You’ll innately know that something is seriously wrong because you won’t be able to lift your arm up. Other symptoms include immediate swelling and/or bruising near the fracture, grinding sounds with arm movements and potential numbness and tingling in the arm/hand.
  • Apply ice to your radial head fractures – After you get home from the hospital radial head fractures (regardless if you had surgery or not), you should apply a bag of crushed ice (or something cold) to your injured in order to reduce the swelling and numb the pain. Ice therapy is effective for acute (recent) injuries that involve swelling because it reduces blood flow by constricting local blood vessels. Apply the crushed ice to your radial head fractures  for 15 minutes three to five times daily until the soreness and inflammation eventually fades away
    Lightly exercise after the pain fades – After a couple of weeks when the swelling has subsided and the pain has faded away, remove your arm sling for short periods and carefully move your arm and shoulder in all different directions. Don’t aggravate the radial head fractures so that it hurts, but gently reintroduce movements to the involved joints and muscles. Start cautiously, maybe starting with light calisthenics and then progress to holding light weights (five-pound weights to start). Your distal radius fractures need to move a little bit during the later phases of the injury to stimulate complete recovery.
  • Practice stretching and strengthening exercises – of the fingers, elbow, and shoulder if your doctor recommends them.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for six to eight weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)
  • Get a supportive arm sling – Due to their anatomical position, radial head fractures can’t be cast like a broken limb can. Instead, a supportive arm sling or “figure-eight” splint is typically used for support and comfort, either immediately after the injury if it’s just a hairline fracture or following surgery, if it’s a complicated fracture. A figure-eight splint wraps around both shoulders and the base of your neck in order to support the injured shoulder and keep it positioned up and back. Sometimes a larger swath of material is wrapped around the sling to keep it closer to your body. You’ll need to wear the sling constantly until there is no pain with arm movements, which takes between two to four weeks for children or four to eight weeks for adults.
  • Get a referral to physical therapy – Once you’ve recovered and able to remove your arm sling splint for good, you’ll likely notice that the muscles surrounding your shoulder and upper chest look smaller and feel weaker. That’s because muscle tissue atrophies without movement. If this occurs, then you’ll need to get a referral for some physical rehabilitation. Rehab can start once you are cleared by your orthopedist, are pain-free, and can perform all the basic arm and radial head fractures movements. A physiotherapist or athletic trainer can show you specific rehabilitation exercises and stretches to restore your muscle strength, joint movements, and flexibility
  • Rigid fixation – osteosynthesis with locking plate, hook plate fixation, fixation with radial and ulnar shaft locking plate, coracoclavicular screws, Knowles pin fixation.
  • Flexible fixation – simple k wire fixation, tension band wiring, suture anchors, vicryl tape, dacron arterial graft for coracoclavicular ligament reconstruction.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for six to eight weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)

Rest your Hand

Once you’re discharged from the hospital in an arm sling, your top priority is to rest your radial head fractures and not further inflame the injury. Of course, the arm sling not only provides support, but it also restricts movement, which is why you should keep it on even during sleep. Avoiding the temptation to move your shoulder and arm will help the bone mend quicker and the pain fades away sooner.
  • Depending on what you do for a living and if the injury is to your dominant side, you may need to take a couple of weeks off work to recuperate.
  • Healing takes between four to six weeks in younger people and up to 12 weeks in the elderly, but it depends on the severity of the radial head fractures.
  • Athletes in good health are typically able to resume their sporting activities within two months of breaking they’re ulnar styloid depending on the severity of the break and the specific sport.
  • Sleeping on your back (with the sling on) is necessary to keep the pressure off your shoulder and prevent stressing the clavicle injury.

Eat nutritiously during your recovery

All bones and tissues in the body need certain nutrients in order to heal properly and in a timely manner. Eating a nutritious and balanced diet that includes lots of minerals and vitamins are proven to help heal broken bones of all types, including ulnar styloid. Therefore, focus on eating lots of fresh produce (fruits and veggies), whole grains, lean meats, and fish to give your body the building blocks needed to properly repair your radial and ulnar shaft fractures. In addition, drink plenty of purified water, milk, and other dairy-based beverages to augment what you eat.

  • Broken bones need ample minerals (calcium, phosphorus, magnesium, boron) and protein to become strong and healthy again.
  • Excellent sources of minerals/protein include dairy products, tofu, beans, broccoli, nuts and seeds, sardines and salmon.
  • Important vitamins that are needed for bone healing include vitamin C (needed to make collagen), vitamin D (crucial for mineral absorption), and vitamin K (binds calcium to bones and triggers collagen formation).
  • Conversely, don’t consume food or drink that is known to impair bone/tissue healing, such as alcoholic beverages, sodas, most fast food items and foods made with lots of refined sugars and preservatives.

Physical therapy

  • Although there will be some pain, it is important to maintain arm motion to prevent stiffness. Often, patients will begin doing exercises for elbow motion immediately after the injury.  After a radial head fracture, it is common to lose some shoulder and arm strength. Once the bone begins to heal, your pain will decrease and your doctor may start gentle shoulder exercises. These exercises will help prevent stiffness and weakness. More strenuous exercises will be started gradually once the fracture is completely healed.

Follow-up care

  • You will need to see your doctor regularly until your fracture heals. During these visits, he or will take x-rays to make sure the bone is healing in a good position. After the bone has healed, you will be able to gradually return to your normal activities.

Breathing Exercise

  • To elevate breathing problem or remove the lung congestion if needed.

Medication

Surgical Treatment

  • Radial head excision – Indication in severe pain in selected cases for instance older adults with a low demand with complex fractures but no associated fractures which compromise stability. One option is the differed excision with the same indication to the mentioned one or to enhance pronation-supination. [rx]
  • Open or arthroscopic – Fragment excision may be indicated in cases where these can obstruct joints and are too small for osteosynthesis and should not be part of the proximal radio-ulnar joint.
  • Osteosynthesis – As regards isolated fractures, it is an absolute indication when they cause a joint blockage. (Mason type 2) Step over 2 mm, joint fragment over 30%, neck fractures with angling over 30 degrees.[rx] Low profile plates and screws implants or cannulated are applied.
  • Surgical approach – (Kocher) between the anconeus and extensor carpi ulnaris (ECU), it provides good access to the back fragments and safety to the posterior interosseous nerve. Another option is extensor digitorium comunis (EDC) splinting to avoid iatrogenic injuries.
  • Osteosynthesis – should be placed in the safe interval to avoid interference with the proximal radio-ulnar joint which is located 110 external degrees with the elbow in neutral pronation-supination.
  • In complex fractures – osteosynthesis or prosthesis? It is convenient not to get more than three fragments with no impaction or deformity with enough bone quality and without metaphyseal bone loss to achieve stable internal fixation. In many cases, these fracture features are determined at surgery time.
  • Arthroplasty – Indication for non-repairable fractures. A prosthesis-sized appropriate choice is important to avoid articular stiffness. [rx]

Complications of Radial Head Fractures

  • Nonunion (1-5%)
  • Infection (~4.8%)
  • 4% in the surgical group develop adhesive capsulitis requiring surgical intervention
  • Bleeding
  • Problems with wound healing
  • Blood clots
  • Damage to blood vessels or nerves
  • Reaction to anesthesia
  • Hardware prominence
  • Malunion with cosmetic deformity
  • Restriction of ROM
  • The difficulty with bone healing
  • Hardware irritation
  • Fracture comminution (Z deformity)
  • Fracture displacement
  • Increased fatigue with overhead activities
  • Dissatisfaction with appearance
  • The difficulty with shoulder straps, backpacks and the like
  • ~30% of patient request plate removal
  • Superior plates associated with increased irritation
  • Superior plates associated with increased risk of subclavian artery or vein penetration

References

Radial Neck Fractures

By

Radial Head Fractures; Causes, Diagnosis, Treatment

Radial head fractures represent approximately one-third of elbow fractures and 1% to 4% of fractures in adults. A few years ago, the radial head was considered of little importance in the elbow anatomy and biomechanics, so its excision was frequently indicated. Laboratory studies and long-term series outcomes have shown the undesirable consequences of this method. Associated injuries usually determine treatment and outcomes.[rx]

Radial head fractures

Anatomy Radial Head Fractures

A 180-degree arch in the pronation and supination is allowed by the articulation of the proximal end of the radius with the distal humerus (capitulum), and with the ulna in the lesser sigmoid cup (trochoid joint). Cartilage covers the radial head except for the anterolateral third that lacks subchondral bone, and it is easily fractured. It has a 40-degree central cavity, and it is oval-size-like. The head and neck are not collinear with the diaphysis and complete a 15-degree offset angle. They are closely related to the lateral ligament complex, mainly the annular ligament and radial collateral ligament.[rx]

The physiologic elbow range of movement is zero to 150 degrees of flexion and extension, and  85 degrees of pronation and  75 degrees of supination.[rx]

The radial head stabilizes in valgus when the internal ligament complex is injured, and it does not take part when being harmless (secondary stabilizer). Moreover, it is involved in longitudinal stability. [rx]

Causes of Radial Head Fractures

Colles’ fracture

  • Sudden forceful  fall down
  • Road traffic accident
  • Falls – Falling onto an outstretched hand is one of the most common causes of broken radial head fractures.
  • Sports injuries – Many radials and radial head fractures occur during contact sports or sports in which you might fall onto an outstretched hand — such as in-line skating or snowboarding.
  • Motor vehicle crashes – Motor vehicle crashes can cause radial head fractures to break, sometimes into many pieces, and often require surgical repair.
  • Have osteoporosis –  a disease that weakens your bones
  • Eave low muscle mass or poor muscle strength – or lack agility and have poor balance (these conditions make you more likely to fall)
  • Walk or do other activities in snow or on the ice – or do activities that require a lot of forwarding momenta, such as in-line skating and skiing
  • Wave an inadequate intake of calcium or vitamin D
  • Football or soccer, especially on artificial turf
  • Rugby
  • Horseback riding
  • Hockey
  • Skiing
  • Snowboarding
  • In-line skating
  • Jumping on a trampoline

Symptoms of Radial Head Fractures

Common symptoms of  radial head fractures include:

  • Severe pain that might worsen when gripping or squeezing or moving your hand or wrist
  • Swelling
  • Tenderness
  • Bruising
  • Obvious deformity, such as a bent wrist
  • Pain
  • The wrist hanging in a deformed way
  • Pain, especially when flexing the wrist
  • Deformity of the wrist, causing it to look crooked and bent.
  • Your wrist is in great pain.
  • Your wrist, arm, or hand is numb.
  • Your fingers are pale.

Diagnosis of Radial Head Fractures

Diagnosis can be made upon the interpretation of anteroposterior and lateral views alone.[rx]

The classic radial head fractures have the following characteristics:[rx]

  • Transverse fracture of the radial and ulnar shaft fractures
  • dorsal displacement and dorsal angulation, together with radial tilt[rx]

Other characteristics[rx][rx]

  • Radial shortening
  • Loss of ulnar inclination≤
  • Radial angulation of the wrist
  • Comminution at the fracture site
  • Associated fracture of the ulnar styloid process in more than 60% of cases.

Differential Diagnosis/ Associated Injuries

  • Scapholunate ligament tear
  • Median nerve injury
  • TFCC (triangular fibrocartilage complex) injury, up to 50% when ulnar styloid fx also present
  • Carpal ligament injury – Scapholunate Instability(most common), lunotriquetral ligament
  • Tendon injury, attritional EPL rupture, usually treated with EIP tendon transfer
  • Compartment syndrome
  • Ulnar styloid fracture
  • DRUJ (Distal Radial Ulnar Joint) Instability
  • Galeazzi Fracture: highly associated with distal 1/3 radial shaft fractures[rx]
X-ray of a displaced intra-articular radial head fractures in an external fixator – The articular surface is widely displaced and irregular. Diagnosis may be evident clinically when the radial head fractures are deformed but should be confirmed by X-ray. The differential diagnosis includes scaphoid fractures and wrist dislocations, which can also co-exist with radial head fractures. Occasionally, fractures may not be seen on X-rays immediately after the injury. Delayed X-rays, X-ray computed tomography (CT scan), or Magnetic resonance imaging[rx] (MRI) can confirm the diagnosis.

Medical Imaging

  • Fracture with a dorsal tilt – Dorsal is left, and volar is right in the image.
  • X-ray of the affected wrist is required if a fracture is suspected. Posteroanterior, lateral, and oblique views can be used together to describe the fracture.[rx] X-ray of the uninjured wrist should also be taken to determine if any normal anatomic variations exist before surgery.[rx]
  • A CT scan is often performed to further investigate the articular anatomy of the fracture, especially for fracture and displacement within the distal radio-ulnar joint.[rx]

Various kinds of information can be obtained from X-rays of the wrist:[rx]

Lateral view

  • Carpal malalignment – A line is drawn along the long axis of the capitate bone and another line is drawn along the long axis of the radius. If the carpal bones are aligned, both lines will intersect within the carpal bones. If the carpal bones are not aligned, both lines will intersect outside the carpal bones. Carpal malignment is frequently associated with a dorsal or volar tilt of the radius and will have poor grip strength and poor forearm rotation.[rx]
  • Teardrop angle – It is the angle between the line that passes through the central axis of the volar rim of the lunate facet of the radius and the line that pass through the long axis of the radius. Teardrop angle less than 45 degrees indicates the displacement of the lunate facet.[rx]
  • Anteroposterior distance (AP distance) – Seen on lateral X-ray, it is the distance between the dorsal and volar rim of the lunate facet of the radius. The usual distance is 19 mm.[rx] Increased AP distance indicates the lunate facet fracture.[rx]
  • Volar or dorsal tilt – A line is drawn joining the most distal ends of the volar and dorsal side of the radius. Another line perpendicular to the longitudinal axis of the radius is drawn. The angle between the two lines is the angle of volar or dorsal tilt of the wrist. Measurement of volar or dorsal tilt should be made in true lateral view of the wrist because pronation of the forearm reduces the volar tilt and supination increases it. When the dorsal tilt is more than 11 degrees, it is associated with loss of grip strength and loss of wrist flexion.[rx]

Posteroanterior view

  • Radial inclination – It is the angle between a line drawn from the radial head fractures to the medial end of the articular surface of the radius and a line drawn perpendicular to the long axis of the radius. Loss of radial inclination is associated with loss of grip strength.[rx]
  • Radial length – It is the vertical distance in millimeters between a line tangential to the articular surface of the ulna and a tangential line drawn at the most distal point of radius (radial styloid). [rx]
  • Ulnar variance – It is the vertical distance between a horizontal line parallel to the articular surface of the radius and another horizontal line drawn parallel to the articular surface of the ulnar head. Positive ulnar variance (ulna appears longer than radius) disturbs the integrity of triangular fibrocartilage complex and is associated with loss of grip strength and wrist pain.[rx]

Oblique view

  • Pronated oblique view of the distal radius helps to show the degree of comminution of the radial and ulnar shaft fractures, depression of the radial styloid and confirming the position the screws at the radial side of the distal end radius. Meanwhile, a supinated oblique view of shows the ulnar side of the distal radius, accessing the depression of dorsal rim of the lunate facet, and the position of the screws on the ulnar side of the distal end radius.[rx]

Treatment of Radial Head Fractures

Non-Surgical

Treatment available can be broadly

  • Get medical help immediately – If you fall on an outstretched arm, get into a car accident or are hit while playing a sport and feel intense pain in your shoulder area, then get medical care immediately. Radial head fractures cause significant pain in the front part of your shoulder, closer to the base of your neck. You’ll innately know that something is seriously wrong because you won’t be able to lift your arm up. Other symptoms include immediate swelling and/or bruising near the fracture, grinding sounds with arm movements and potential numbness and tingling in the arm/hand.
  • Apply ice to your radial head fractures – After you get home from the hospital radial head fractures (regardless if you had surgery or not), you should apply a bag of crushed ice (or something cold) to your injured in order to reduce the swelling and numb the pain. Ice therapy is effective for acute (recent) injuries that involve swelling because it reduces blood flow by constricting local blood vessels. Apply the crushed ice to your radial head fractures  for 15 minutes three to five times daily until the soreness and inflammation eventually fades away
    Lightly exercise after the pain fades – After a couple of weeks when the swelling has subsided and the pain has faded away, remove your arm sling for short periods and carefully move your arm and shoulder in all different directions. Don’t aggravate the radial head fractures so that it hurts, but gently reintroduce movements to the involved joints and muscles. Start cautiously, maybe starting with light calisthenics and then progress to holding light weights (five-pound weights to start). Your distal radius fractures need to move a little bit during the later phases of the injury to stimulate complete recovery.
  • Practice stretching and strengthening exercises – of the fingers, elbow, and shoulder if your doctor recommends them.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for six to eight weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)
  • Get a supportive arm sling – Due to their anatomical position, radial head fractures can’t be cast like a broken limb can. Instead, a supportive arm sling or “figure-eight” splint is typically used for support and comfort, either immediately after the injury if it’s just a hairline fracture or following surgery, if it’s a complicated fracture. A figure-eight splint wraps around both shoulders and the base of your neck in order to support the injured shoulder and keep it positioned up and back. Sometimes a larger swath of material is wrapped around the sling to keep it closer to your body. You’ll need to wear the sling constantly until there is no pain with arm movements, which takes between two to four weeks for children or four to eight weeks for adults.
  • Get a referral to physical therapy – Once you’ve recovered and able to remove your arm sling splint for good, you’ll likely notice that the muscles surrounding your shoulder and upper chest look smaller and feel weaker. That’s because muscle tissue atrophies without movement. If this occurs, then you’ll need to get a referral for some physical rehabilitation. Rehab can start once you are cleared by your orthopedist, are pain-free, and can perform all the basic arm and radial head fractures movements. A physiotherapist or athletic trainer can show you specific rehabilitation exercises and stretches to restore your muscle strength, joint movements, and flexibility
  • Rigid fixation – osteosynthesis with locking plate, hook plate fixation, fixation with radial and ulnar shaft locking plate, coracoclavicular screws, Knowles pin fixation.
  • Flexible fixation – simple k wire fixation, tension band wiring, suture anchors, vicryl tape, dacron arterial graft for coracoclavicular ligament reconstruction.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for six to eight weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)

Rest your Hand

Once you’re discharged from the hospital in an arm sling, your top priority is to rest your radial head fractures and not further inflame the injury. Of course, the arm sling not only provides support, but it also restricts movement, which is why you should keep it on even during sleep. Avoiding the temptation to move your shoulder and arm will help the bone mend quicker and the pain fades away sooner.
  • Depending on what you do for a living and if the injury is to your dominant side, you may need to take a couple of weeks off work to recuperate.
  • Healing takes between four to six weeks in younger people and up to 12 weeks in the elderly, but it depends on the severity of the radial head fractures.
  • Athletes in good health are typically able to resume their sporting activities within two months of breaking they’re ulnar styloid depending on the severity of the break and the specific sport.
  • Sleeping on your back (with the sling on) is necessary to keep the pressure off your shoulder and prevent stressing the clavicle injury.

Eat nutritiously during your recovery

All bones and tissues in the body need certain nutrients in order to heal properly and in a timely manner. Eating a nutritious and balanced diet that includes lots of minerals and vitamins are proven to help heal broken bones of all types, including ulnar styloid. Therefore, focus on eating lots of fresh produce (fruits and veggies), whole grains, lean meats, and fish to give your body the building blocks needed to properly repair your radial and ulnar shaft fractures. In addition, drink plenty of purified water, milk, and other dairy-based beverages to augment what you eat.

  • Broken bones need ample minerals (calcium, phosphorus, magnesium, boron) and protein to become strong and healthy again.
  • Excellent sources of minerals/protein include dairy products, tofu, beans, broccoli, nuts and seeds, sardines and salmon.
  • Important vitamins that are needed for bone healing include vitamin C (needed to make collagen), vitamin D (crucial for mineral absorption), and vitamin K (binds calcium to bones and triggers collagen formation).
  • Conversely, don’t consume food or drink that is known to impair bone/tissue healing, such as alcoholic beverages, sodas, most fast food items and foods made with lots of refined sugars and preservatives.

Physical therapy

  • Although there will be some pain, it is important to maintain arm motion to prevent stiffness. Often, patients will begin doing exercises for elbow motion immediately after the injury.  After a radial head fracture, it is common to lose some shoulder and arm strength. Once the bone begins to heal, your pain will decrease and your doctor may start gentle shoulder exercises. These exercises will help prevent stiffness and weakness. More strenuous exercises will be started gradually once the fracture is completely healed.

Follow-up care

  • You will need to see your doctor regularly until your fracture heals. During these visits, he or will take x-rays to make sure the bone is healing in a good position. After the bone has healed, you will be able to gradually return to your normal activities.

Breathing Exercise

  • To elevate breathing problem or remove the lung congestion if needed.

Medication

Surgical Treatment

  • Radial head excision – Indication in severe pain in selected cases for instance older adults with a low demand with complex fractures but no associated fractures which compromise stability. One option is the differed excision with the same indication to the mentioned one or to enhance pronation-supination. [rx]
  • Open or arthroscopic – Fragment excision may be indicated in cases where these can obstruct joints and are too small for osteosynthesis and should not be part of the proximal radio-ulnar joint.
  • Osteosynthesis – As regards isolated fractures, it is an absolute indication when they cause a joint blockage. (Mason type 2) Step over 2 mm, joint fragment over 30%, neck fractures with angling over 30 degrees.[rx] Low profile plates and screws implants or cannulated are applied.
  • Surgical approach – (Kocher) between the anconeus and extensor carpi ulnaris (ECU), it provides good access to the back fragments and safety to the posterior interosseous nerve. Another option is extensor digitorium comunis (EDC) splinting to avoid iatrogenic injuries.
  • Osteosynthesis – should be placed in the safe interval to avoid interference with the proximal radio-ulnar joint which is located 110 external degrees with the elbow in neutral pronation-supination.
  • In complex fractures – osteosynthesis or prosthesis? It is convenient not to get more than three fragments with no impaction or deformity with enough bone quality and without metaphyseal bone loss to achieve stable internal fixation. In many cases, these fracture features are determined at surgery time.
  • Arthroplasty – Indication for non-repairable fractures. A prosthesis-sized appropriate choice is important to avoid articular stiffness. [rx]

Complications of Radial Head Fractures

  • Nonunion (1-5%)
  • Infection (~4.8%)
  • 4% in the surgical group develop adhesive capsulitis requiring surgical intervention
  • Bleeding
  • Problems with wound healing
  • Blood clots
  • Damage to blood vessels or nerves
  • Reaction to anesthesia
  • Hardware prominence
  • Malunion with cosmetic deformity
  • Restriction of ROM
  • The difficulty with bone healing
  • Hardware irritation
  • Fracture comminution (Z deformity)
  • Fracture displacement
  • Increased fatigue with overhead activities
  • Dissatisfaction with appearance
  • The difficulty with shoulder straps, backpacks and the like
  • ~30% of patient request plate removal
  • Superior plates associated with increased irritation
  • Superior plates associated with increased risk of subclavian artery or vein penetration

References

Radial head fractures

By

Ulnar Shaft Fractures; Causes, Diagnosis, Treatment

Ulnar Shaft Fractures most commonly occur after a fall onto an outstretched arm.  In fractures requiring reduction, the clinical deformity is usually readily apparent. Patients should be assessed for evidence of open fracture, ipsilateral fracture proximal or distal to the forearm, and baseline neurovascular status as these will all influence ultimate treatment.

The forearm consists of two parallel bones (radius and ulna) and radioulnar joints of the elbow and wrist, which play an important role in forearm rotation. Shaft fractures involving these bones, if inadequately treated, can result in a significant loss of motion of the forearm. Although the displacement of shaft fractures of both forearm bones (SFBFBs) is influenced by the direction of external force, the radial fracture is further influenced by muscle contraction based on the location of shaft fracture. Reduction of anatomical relationships such as the length of both bones, rotational alignment, radial bowing, and interosseous space between the radius and the ulna are important to restore the function of the forearm.[rx,rx]

Mechanism of Radius Shaft Fractures

Most of the fractures are caused by a fall on the outstretched hand with the wrist in dorsiflexion. The form and severity of fracture of radial and ulnar shaft fractures as well as the concomitant injury of disco-ligamentary structures of the wrist also depend on the position of the wrist at the moment of hitting the ground. The width of this angle influences the localization of the fracture. Pronation, supination, and abduction determine the direction of the force and the compression of the carpus and different appearances of ligament injuries.[rx]

The radius initially fails in tension on the volar aspect, with the fracture progressing dorsally where bending forces induce compressive stresses, resulting in dorsal comminution. Cancellous impaction of the metaphysis further compromises dorsal stability. Additional shearing forces influence the injury pattern, resulting in articular surface involvement.[rx]

Types of Radius Shaft Fractures

Melone classification

The system that comes closest to directing treatment has been devised by Melone. This system breaks radial and ulnar shaft fractures down into 4 components: radial styloid, dorsal medial fragment, volar medial fragment, and radial shaft. The two medial fragments (which together create the lunate fossa) are grouped together as the medial complex.[rx]

Type Description Note
I No displacement of a medial complex

  • No comminution.
Fracture is stable after closed reduction
II Unstable depression fracture of lunate fossa (“die-punch”)

  • Moderate/severe medial complex displacement.
  • Comminution of dorsal and volar cortices.
  • IIA – Irreducible, closed fracture.
  • IIB – Irreducible, closed due to impaction
III Type II fracture plus a ‘spike’ of the radius volarly May impinge on the median nerve
IV Split fracture

  • Severe comminution
  • Rotation of fragments.
Unstable
V Explosion injuries

  • Severe displacement/comminution
Often associated with diaphyseal comminution

Frykman Classification

Though the Frykman classification system has traditionally been used, there is little value in its use because it does not help direct treatment. This system focuses on articular and ulnar involvement. The classification is as follows:[rx]

Radius Fracture Ulna Fracture
Absent Present
Extra-articular I II
Intra-articular involving radiocarpal joint III IV
Intra-articular involving DRUJ (distal radio-ulnar joint) V VI
Intra-articular involving both radiocarpal & DRUJ VII VIII

Universal Classification

The Universal classification system is descriptive but also does not direct treatment. Universal codes are:[rx]

Type Location Displacement Sub-type
I Extra-articular Undisplaced
II Extra-articular Displaced A: Reducible, stableB: Reducible, unstable

C: Irreducible

III Intra-articular Undisplaced
IV Intra-articular Displaced A: Reducible, stableB: Reducible, unstable

C: Irreducible

D: Complex

AO/OTA Classification

A widely used system that includes 27 subgroups. Three main groups based on fracture joint involvement (A – extra-articular, B – partial articular, C – complete articular). Classification further defined based on the level of comminution and direction of displacement. A qualification (Q) modifier can be added to classify associated ulnar injury.[rx]

Fernandez classification

The simplified system developed in response to AO classification, intended to be based off injury mechanism with more treatment-oriented classifications (treatment suggestions not meant to be used as rigid guidelines but can be used to help decision making on a case-by-case basis)[rx]

Type Description Stability Number of Fragments Associated Lesions (see below) Recommended Treatment
I Bending fracture – metaphysis Stable or unstable 2 main fragments with variable metaphyseal comminution Uncommon Stable -> conservativeUnstable -> percutaneous pinning or external fixation
II Shearing fracture – articular surface Unstable 2, 3, comminuted Less uncommon Open reduction with screw-plate fixation
III Compression fracture – articular surface Stable or unstable 2, 3, 4, comminuted Common
  • Closed
  • Limited arthroscopic release
  • Extensile open reduction
  • Percutaneous pins plus external and internal fixation
  • Bone Graft
IV Avulsion fracture, radiocarpal fracture, dislocation Unstable 2 (radial/ulnar styloid), 3, comminuted Frequent(especially ligamentous injury) Closed or open reduction with pin/screw fixation or tension wiring
V Combined fracture (high-energy injury) – Often intra-articular and open Unstable Comminuted Always present Combined treatment

Note: Associated Lesions include carpal ligament injury, nerve injury, tendon damage, and compartment syndrome

Causes of Radius Shaft Fractures

Colles’ fracture

  • Sudden forceful  fall down
  • Road traffic accident
  • Falls – Falling onto an outstretched hand is one of the most common causes of a broken radial and ulnar shaft fractures.
  • Sports injuries – Many radials and ulnar shaft fractures occur during contact sports or sports in which you might fall onto an outstretched hand — such as in-line skating or snowboarding.
  • Motor vehicle crashes – Motor vehicle crashes can cause wrist bones to break, sometimes into many pieces, and often require surgical repair.
  • Have osteoporosis –  a disease that weakens your bones
  • Eave low muscle mass or poor muscle strength – or lack agility and have poor balance (these conditions make you more likely to fall)
  • Walk or do other activities in snow or on the ice – or do activities that require a lot of forwarding momenta, such as in-line skating and skiing
  • Wave an inadequate intake of calcium or vitamin D
  • Football or soccer, especially on artificial turf
  • Rugby
  • Horseback riding
  • Hockey
  • Skiing
  • Snowboarding
  • In-line skating
  • Jumping on a trampoline

Symptoms of Radius Shaft Fractures

Common symptoms of radial and ulnar shaft fractures include:

  • Severe pain that might worsen when gripping or squeezing or moving your hand or wrist
  • Swelling
  • Tenderness
  • Bruising
  • Obvious deformity, such as a bent wrist
  • Pain
  • The wrist hanging in a deformed way
  • Pain, especially when flexing the wrist
  • Deformity of the wrist, causing it to look crooked and bent.
  • Your wrist is in great pain.
  • Your wrist, arm, or hand is numb.
  • Your fingers are pale.

Diagnosis of Radius Shaft Fractures

Diagnosis can be made upon the interpretation of anteroposterior and lateral views alone.[rx]

The classic distal radius fractures have the following characteristics:[rx]

  • Transverse fracture of the radial and ulnar shaft fractures
  • dorsal displacement and dorsal angulation, together with radial tilt[rx]

Other characteristics[rx][rx]

  • Radial shortening
  • Loss of ulnar inclination≤
  • Radial angulation of the wrist
  • Comminution at the fracture site
  • Associated fracture of the ulnar styloid process in more than 60% of cases.

Differential Diagnosis/ Associated Injuries

  • Scapholunate ligament tear
  • Median nerve injury
  • TFCC (triangular fibrocartilage complex) injury, up to 50% when ulnar styloid fx also present
  • Carpal ligament injury – Scapholunate Instability(most common), lunotriquetral ligament
  • Tendon injury, attritional EPL rupture, usually treated with EIP tendon transfer
  • Compartment syndrome
  • Ulnar styloid fracture
  • DRUJ (Distal Radial Ulnar Joint) Instability
  • Galeazzi Fracture: highly associated with distal 1/3 radial shaft fractures[rx]
X-ray of a displaced intra-articular radial and ulnar shaft fractures in an external fixator – The articular surface is widely displaced and irregular. Diagnosis may be evident clinically when the radial and ulnar shaft fractures is deformed but should be confirmed by X-ray. The differential diagnosis includes scaphoid fractures and wrist dislocations, which can also co-exist with a radial and ulnar shaft fractures. Occasionally, fractures may not be seen on X-rays immediately after the injury. Delayed X-rays, X-ray computed tomography (CT scan), or Magnetic resonance imaging[rx] (MRI) can confirm the diagnosis.

Medical Imaging

  • Fracture with a dorsal tilt – Dorsal is left, and volar is right in the image.
  • X-ray of the affected wrist is required if a fracture is suspected. Posteroanterior, lateral, and oblique views can be used together to describe the fracture.[rx] X-ray of the uninjured wrist should also be taken to determine if any normal anatomic variations exist before surgery.[rx]
  • A CT scan is often performed to further investigate the articular anatomy of the fracture, especially for fracture and displacement within the distal radio-ulnar joint.[rx]

Various kinds of information can be obtained from X-rays of the wrist:[rx]

Lateral view

  • Carpal malalignment – A line is drawn along the long axis of the capitate bone and another line is drawn along the long axis of the radius. If the carpal bones are aligned, both lines will intersect within the carpal bones. If the carpal bones are not aligned, both lines will intersect outside the carpal bones. Carpal malignment is frequently associated with a dorsal or volar tilt of the radius and will have poor grip strength and poor forearm rotation.[rx]
  • Teardrop angle – It is the angle between the line that passes through the central axis of the volar rim of the lunate facet of the radius and the line that pass through the long axis of the radius. Teardrop angle less than 45 degrees indicates the displacement of the lunate facet.[rx]
  • Anteroposterior distance (AP distance) – Seen on lateral X-ray, it is the distance between the dorsal and volar rim of the lunate facet of the radius. The usual distance is 19 mm.[rx] Increased AP distance indicates the lunate facet fracture.[rx]
  • Volar or dorsal tilt – A line is drawn joining the most distal ends of the volar and dorsal side of the radius. Another line perpendicular to the longitudinal axis of the radius is drawn. The angle between the two lines is the angle of volar or dorsal tilt of the wrist. Measurement of volar or dorsal tilt should be made in true lateral view of the wrist because pronation of the forearm reduces the volar tilt and supination increases it. When the dorsal tilt is more than 11 degrees, it is associated with loss of grip strength and loss of wrist flexion.[rx]

Posteroanterior view

  • Radial inclination – It is the angle between a line drawn from the radial and ulnar shaft fractures to the medial end of the articular surface of the radius and a line drawn perpendicular to the long axis of the radius. Loss of radial inclination is associated with loss of grip strength.[rx]
  • Radial length – It is the vertical distance in millimeters between a line tangential to the articular surface of the ulna and a tangential line drawn at the most distal point of radius (radial styloid). [rx]
  • Ulnar variance – It is the vertical distance between a horizontal line parallel to the articular surface of the radius and another horizontal line drawn parallel to the articular surface of the ulnar head. Positive ulnar variance (ulna appears longer than radius) disturbs the integrity of triangular fibrocartilage complex and is associated with loss of grip strength and wrist pain.[rx]

Oblique view

  • Pronated oblique view of the distal radius helps to show the degree of comminution of the radial and ulnar shaft fractures, depression of the radial styloid and confirming the position the screws at the radial side of the distal end radius. Meanwhile, a supinated oblique view of shows the ulnar side of the distal radius, accessing the depression of dorsal rim of the lunate facet, and the position of the screws on the ulnar side of the distal end radius.[rx]

Plain radiographs

  • Radiographic imaging is important in diagnosis, classification, treatment and follow-up assessment of these fractures. The routine minimal evaluation for radial and ulnar shaft fractures must include two views-a postero-anterior (PA) view and lateral view.[rx]
  • The PA view should be obtained with the humerus abducted 90 degrees from the chest wall, so that the elbow is at the same level as the shoulder and flexed 90 degrees.[rx] The palm is maintained flat against the cassette

Computed Tomography

  • CT may be useful and can give significant information in comparison with that obtained with conventional radiography in the evaluation of complex or occult fractures, radial and ulnar shaft articular surface, distal radio-ulnar joint, ventromedial fracture fragment (as described by Melone),[rx] assessments of fracture healing as well as post-surgical evaluation.[rx]
  • CT may be indicated for the confirmation of occult fractures suspected on the basis of physical examination when plain films are normal.

Magnetic Resonance Imaging

  • Although this modality is not the first choice in evaluating acute distal radius fractures, it is a powerful diagnostic tool to assess bony, ligamentous and soft tissue abnormalities associated with these fractures.
  • MRI has proved to be a very important diagnostic tool for delineating perforation of triangular fibrocartilage complex (TFCC),[rx] perforation of interosseous ligaments of the proximal carpal row, evaluating occult fractures, post-traumatic or avascular necrosis of carpal bones.

Treatment of Radius Shaft Fractures

Non-Surgical

Treatment available can be broadly

  • Get medical help immediately – If you fall on an outstretched arm, get into a car accident or are hit while playing a sport and feel intense pain in your shoulder area, then get medical care immediately. Radial and ulnar shaft fractures cause significant pain in the front part of your shoulder, closer to the base of your neck. You’ll innately know that something is seriously wrong because you won’t be able to lift your arm up. Other symptoms include immediate swelling and/or bruising near the fracture, grinding sounds with arm movements and potential numbness and tingling in the arm/hand.
  • Apply ice to your fractured clavicle – After you get home from the hospital radial and ulnar shaft fractures (regardless if you had surgery or not), you should apply a bag of crushed ice (or something cold) to your injured in order to reduce the swelling and numb the pain. Ice therapy is effective for acute (recent) injuries that involve swelling because it reduces blood flow by constricting local blood vessels. Apply the crushed ice to your clavicle for 15 minutes three to five times daily until the soreness and inflammation eventually fades away
    Lightly exercise after the pain fades – After a couple of weeks when the swelling has subsided and the pain has faded away, remove your arm sling for short periods and carefully move your arm and shoulder in all different directions. Don’t aggravate the radial and ulnar shaft fractures so that it hurts, but gently reintroduce movements to the involved joints and muscles. Start cautiously, maybe starting with light calisthenics and then progress to holding light weights (five-pound weights to start). Your distal radius fractures need to move a little bit during the later phases of the injury to stimulate complete recovery.
  • Practice stretching and strengthening exercises – of the fingers, elbow, and shoulder if your doctor recommends them.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for six to eight weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)
  • Get a supportive arm sling – Due to their anatomical position, distal radius fractures can’t be cast like a broken limb can. Instead, a supportive arm sling or “figure-eight” splint is typically used for support and comfort, either immediately after the injury if it’s just a hairline fracture or following surgery, if it’s a complicated fracture. A figure-eight splint wraps around both shoulders and the base of your neck in order to support the injured shoulder and keep it positioned up and back. Sometimes a larger swath of material is wrapped around the sling to keep it closer to your body. You’ll need to wear the sling constantly until there is no pain with arm movements, which takes between two to four weeks for children or four to eight weeks for adults.
  • Get a referral to physical therapy – Once you’ve recovered and able to remove your arm sling splint for good, you’ll likely notice that the muscles surrounding your shoulder and upper chest look smaller and feel weaker. That’s because muscle tissue atrophies without movement. If this occurs, then you’ll need to get a referral for some physical rehabilitation. Rehab can start once you are cleared by your orthopedist, are pain-free, and can perform all the basic arm and shoulder movements. A physiotherapist or athletic trainer can show you specific rehabilitation exercises and stretches to restore your muscle strength, joint movements, and flexibility
  • Rigid fixation – osteosynthesis with locking plate, hook plate fixation, fixation with radial and ulnar shaft locking plate, coracoclavicular screws, Knowles pin fixation.
  • Flexible fixation – simple k wire fixation, tension band wiring, suture anchors, vicryl tape, dacron arterial graft for coracoclavicular ligament reconstruction.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for six to eight weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)

Rest your Hand

Once you’re discharged from the hospital in an arm sling, your top priority is to rest your shoulder and not further inflame the injury. Of course, the arm sling not only provides support, but it also restricts movement, which is why you should keep it on even during sleep. Avoiding the temptation to move your shoulder and arm will help the bone mend quicker and the pain fades away sooner.
  • Depending on what you do for a living and if the injury is to your dominant side, you may need to take a couple of weeks off work to recuperate.
  • Healing takes between four to six weeks in younger people and up to 12 weeks in the elderly, but it depends on the severity of the radial and ulnar shaft fractures.
  • Athletes in good health are typically able to resume their sporting activities within two months of breaking they’re ulnar styloid depending on the severity of the break and the specific sport.
  • Sleeping on your back (with the sling on) is necessary to keep the pressure off your shoulder and prevent stressing the clavicle injury.

Eat nutritiously during your recovery

All bones and tissues in the body need certain nutrients in order to heal properly and in a timely manner. Eating a nutritious and balanced diet that includes lots of minerals and vitamins is proven to help heal broken bones of all types, including ulnar styloid. Therefore, focus on eating lots of fresh produce (fruits and veggies), whole grains, lean meats, and fish to give your body the building blocks needed to properly repair your radial and ulnar shaft fractures. In addition, drink plenty of purified water, milk, and other dairy-based beverages to augment what you eat.

  • Broken bones need ample minerals (calcium, phosphorus, magnesium, boron) and protein to become strong and healthy again.
  • Excellent sources of minerals/protein include dairy products, tofu, beans, broccoli, nuts and seeds, sardines and salmon.
  • Important vitamins that are needed for bone healing include vitamin C (needed to make collagen), vitamin D (crucial for mineral absorption), and vitamin K (binds calcium to bones and triggers collagen formation).
  • Conversely, don’t consume food or drink that is known to impair bone/tissue healing, such as alcoholic beverages, sodas, most fast food items and foods made with lots of refined sugars and preservatives.

Physical therapy

  • Although there will be some pain, it is important to maintain arm motion to prevent stiffness. Often, patients will begin doing exercises for elbow motion immediately after the injury.  After a radial and ulnar shaft fractures, it is common to lose some shoulder and arm strength. Once the bone begins to heal, your pain will decrease and your doctor may start gentle shoulder exercises. These exercises will help prevent stiffness and weakness. More strenuous exercises will be started gradually once the fracture is completely healed.

Follow-up care

  • You will need to see your doctor regularly until your fracture heals. During these visits, he or will take x-rays to make sure the bone is healing in a good position. After the bone has healed, you will be able to gradually return to your normal activities.

Breathing Exercise

  • To elevate breathing problem or remove the lung congestion if needed.

Medication

Closed Reduction and Casting

  • All fractures characterized by minor comminution, without or with minimal displacements can be considered for closed reduction and cast immobilization. Mainly type I and type IIA Melone’s fracture can be managed conservatively. The fracture should be kept under closed observation to look for any re-displacement.
  • Despite the widespread acceptance of immobilization in a plaster cast, questions remain regarding the optimum position, the duration of immobilization and the need to extend the cast proximal to the elbow. No clear consensus exists as to the best position for immobilizing the wrist in plaster. Sarmiento et al.[rx] advocated immobilization in a position of supination to decrease the deforming force of the brachioradialis, which may cause loss of reduction.

Pins and Plaster Technique

  • Placement of pins in the metacarpals and forearm was initially advocated by Bohler in 1923, but it gained popularity after the report by Green, who showed good or excellent results in 86% of his patients.[rx]
  • However, he noted a high incidence of minor or major complications, one-third of which were related to pin site only. Other researchers also noted that one-third of the complications were related to pins and 16% of the patients needed reoperation for complications.[rx]

Percutaneous Pinning

  • Extra-articular fractures of the distal end of the radius with extensive comminution or the fractures that have no more than two articular fragments, in which anatomical reduction is obtainable, are amenable to percutaneous pinning of the fracture fragments and application of a plaster cast. A single pin placed through the radial styloid as a means of stabilizing the displaced fracture fragment was first suggested by Lambotte in 1908.[rx,rx]

External Fixation

  • External fixation is generally accepted as superior to plaster immobilization in the young patients with an intra-articular comminuted fracture of the radial and ulnar shaft fractures. Other indications for external fixation include some unstable extra-articular fractures with significant comminution and failure to maintain reduction after an initial attempt at closed management in a cast, certain situations of multiple trauma, the presence of dysfunctional contralateral limb, severe open fractures with significant soft tissue injury and neurovascular compromise, and bilateral injuries.[rx]

Limited Open Reduction

  • In intra-articular fractures that have more than 2 mm of displacement, the radio-carpal joint may be incongruent despite adequate attempts at reduction. The incongruency usually involves the lunate part of the distal end of the radius.
  • The radial styloid process and scaphoid facet are more amenable to reduction through ligamentotaxis or by manipulation and reduction.
  • A new technique of combining external fixation with open reduction of the displaced lunate fossa through a small, longitudinal incision and elevation of the impacted fragment without direct visualization of the surface of the joint has been described.[rx]

Open Reduction and Internal Fixation

  • One of the recent advances in the treatment of radial and ulnar shaft fractures is the more frequent application of open reduction and internal fixation, especially for intra-articular fractures. There are two groups of fractures for which open reduction and internal fixation is advisable.

Arthroscopic-Assisted Fracture Reduction

  • Intra-articular fractures of the radius can be arthroscopically assessed, and reduction of the articular components and assessment and repair of ligamentous injury can then be undertaken.[rx,rx,rx] The ideal timing for arthroscopically assisted radial and ulnar shaft fractures surgery is 3 to 7 days after injury.

Rehabilitation Guideline for Non-Operative/Conservative rehabilitation [rx]

Acute Stage (0-8 weeks)

Goals

  • Protection with short-arm cast
  • Control pain and edema
  • Maintain range in digits, elbows, shoulder

Interventions

  • AROM and PROM of digits, elbow, shoulder
  • Elevation of hand and digits to control edema
  • Cast removal between 6-8 weeks

Sub Acute Stage

Goal

  • Control pain and edema (TENS, ice)
  • Increase ROM
  • Increase activities of daily living (ADLs)

Interventions

  • AROM and PROM of digits, elbow, shoulder
  • AROM wrist flexion/ extension, forearm supination/ pronation
  • PROM of low load and prolonged stretch

Settled Stage

Goals

  • Regain full ROM
  • Begin strengthening
  • Return to activity

Interventions

  • Continue all ROM exercises
  • Progress to the strengthening of all joints[rx]

Rehabilitation Guideline for External Fixation by Pho et al

Acute Stage (1-6 weeks)

Goals

  • Control pain and edema (TENS, ice)
  • Protect surgical site
  • Maintain ROM of digits, elbow, shoulder

Interventions

  • Elevation
  • AROM of digits, elbow, shoulder
  • AROM forearm supination/ pronation

Sub Acute (7-10 weeks)

Goal

  • Protect fracture site
  • Control pain and edema (TENS, ice)
  • ROM of involved and uninvolved joints

Interventions

  • AROM and PROM of wrist extension/ flexion, radial deviation, and supination/ pronation

Settled Stage (10-16 weeks)

Goal

  • Regain full ROM
  • Begin strengthening
  • Increase tolerance to ADLs

Interventions

  • ROM of wrist flexion/ extension, radial/ ulnar deviation, forearm supination/ pronation progressing to isometric exercises and resisted exercises using dumbbells or resistive bands
  • PROM of low load and prolonged stretching of wrist motions
  • Grip strengthening
  • ADL training within tolerance[rx]

Cryotherapy

  • Cryotherapy is an effective modality for controlling edema in the acute phase after trauma and during rehab due to its ability in helping to decrease blood flow through vasoconstriction limiting the amount of fluid escaping from capillaries to the interstitial fluid[rx]. Cryotherapy can also be combined with compression and elevation in the treatment of edema.[rx]
  • To control pain using cryotherapy, the modality should be applied to the area for 10-15 minutes which can result in pain control up to 2 hours post application.[rx]Precautions for the use of cryotherapy include: over a superficial branch of the nerve, over an open wound, poor sensation or mentation, and very young or very old patients.[rx] Contraindications for cryotherapy include; Acute febrile illness, Vasospasm e.g. Raynaud’s disease, Cryoglobulinemia, Cold urticaria.[rx]

Electrical Stimulation

  • The use of transcutaneous electrical nerve stimulation (TENS) may be used as an adjunct during any phase of rehab to address pain but can be particularly useful for patients that are increasing the level of activity of the wrist. Conventional (high-rate) TENS is useful for disrupting the pain cycle through a prolonged treatment session as great as 24 hours a day.[rx]
  • Low-rate TENS is another form of electrical stimulation that is successful in diminishing pain by targeting motor or nociceptive A-delta nerves. Low-rate TENS has been reported to be effective in pain control for up to 4-5 hours post-treatment.[rx]
  • The literature is still not conclusive on this topic and the results of one study may contradict or, on the contrary, reinforce the results of another study. Yet there is evidence supporting the beneficial effects of electrical stimulation, especially in combination with physiotherapy exercises.

Supervised Active rehabilitation program used in Study

ISOMETRIC EXERCISE

  • Wrist flexors and extensors

ACTIVE RANGE OF MOTION EXERCISE

  • Assisted stretch to forearm flexors and extensor musculature and radial/ulnar deviation
  • Weight-bearing wrist extension exercise(hand on the table with the patient leaning forward on them) to patient tolerance
  • Active stretch to shoulder girdle and rotator cuff musculature
  • Active stretch to elbow flexor and extensor musculature

INTRINSIC HAND MUSCLE EXERCISE

  • Thumb/digit opposition
  • Repetitive squeezing of therapy
  • repetitive towel wringing exercise

STRENGTHENING ROUTINE

  • Biceps curl with 1,5-2 pound weights bilaterally
  • Shoulder abduction, flexion and extension reps with 2-pound weights bilaterally
  • Repetitive squeezing of a rubber ball in affected wrist
  • Flexion and extension of wrist using 1,5-pound weights increasing as tolerated

FUNCTIONAL ACTIVITIES

  • The patient is encouraged to resume pre-accident activities that involve the affected extremity (eg. writing, typing, cooking, etc.)

Complications of Radius Shaft Fractures

There were no major complications such as neurovascular injury, infection, or impaired wound healing. Surgery-related complication at 2-year follow-up included nonunion in 3 patients (11%),

  • DRUJ subluxation in 3 patients (11%),
  • Implant migration in 4 patients (14%),
  • Radiographic resorption of the ulnar styloid in 4 patients (14%).
  • Radiographic nonunion was noted in 1 patient in group A (8%) and 2 in group B (13%). Residual DRUJ subluxation was noted in 3 patients; all were in group B (20%).
  • Partial or complete radiographic resorption of the ulna was found in 1 patient in group A (8%) and 3 in group B (20%).
  • Implant migration was noted in 1 patient in group A (8%), and 2 in group B (13%).
  • Subsequent removal surgery due to implant irritation occurred in 13 patients (46%), with 4 in group A (31%) and 8 in group B (53%).
  • A total of 11 patients (39%) with surgery-related complications included 5 (38%) in group A and 12 (80%) in group B, with a significant difference

There are risks associated with any type of surgery. These include

  • Nonunion (1-5%)
  • Infection (~4.8%)
  • 4% in the surgical group develop adhesive capsulitis requiring surgical intervention
  • Bleeding
  • Problems with wound healing
  • Blood clots
  • Damage to blood vessels or nerves
  • Reaction to anesthesia
  • Hardware prominence
  • Malunion with cosmetic deformity
  • Restriction of ROM
  • The difficulty with bone healing
  • Hardware irritation
  • Fracture comminution (Z deformity)
  • Fracture displacement
  • Increased fatigue with overhead activities
  • Dissatisfaction with appearance
  • The difficulty with shoulder straps, backpacks and the like
  • ~30% of patient request plate removal
  • Superior plates associated with increased irritation
  • Superior plates associated with increased risk of subclavian artery or vein penetration

References

Radius Shaft Fractures

By

Radius Shaft Fractures; Causes, Diagnosis, Treatment

Radius Shaft Fractures most commonly occur after a fall onto an outstretched arm.  In fractures requiring reduction, the clinical deformity is usually readily apparent. Patients should be assessed for evidence of open fracture, ipsilateral fracture proximal or distal to the forearm, and baseline neurovascular status as these will all influence ultimate treatment.

The forearm consists of two parallel bones (radius and ulna) and radioulnar joints of the elbow and wrist, which play an important role in forearm rotation. Shaft fractures involving these bones, if inadequately treated, can result in a significant loss of motion of the forearm. Although the displacement of shaft fractures of both forearm bones (SFBFBs) is influenced by the direction of external force, the radial fracture is further influenced by muscle contraction based on the location of shaft fracture. Reduction of anatomical relationships such as the length of both bones, rotational alignment, radial bowing, and interosseous space between the radius and the ulna are important to restore the function of the forearm.[rx,rx]

Mechanism of Radius Shaft Fractures

Most of the fractures are caused by a fall on the outstretched hand with the wrist in dorsiflexion. The form and severity of fracture of radial and ulnar shaft fractures as well as the concomitant injury of disco-ligamentary structures of the wrist also depend on the position of the wrist at the moment of hitting the ground. The width of this angle influences the localization of the fracture. Pronation, supination, and abduction determine the direction of the force and the compression of the carpus and different appearances of ligament injuries.[rx]

The radius initially fails in tension on the volar aspect, with the fracture progressing dorsally where bending forces induce compressive stresses, resulting in dorsal comminution. Cancellous impaction of the metaphysis further compromises dorsal stability. Additional shearing forces influence the injury pattern, resulting in articular surface involvement.[rx]

Types of Radius Shaft Fractures

Melone classification

The system that comes closest to directing treatment has been devised by Melone. This system breaks radial and ulnar shaft fractures down into 4 components: radial styloid, dorsal medial fragment, volar medial fragment, and radial shaft. The two medial fragments (which together create the lunate fossa) are grouped together as the medial complex.[rx]

Type Description Note
I No displacement of a medial complex

  • No comminution.
Fracture is stable after closed reduction
II Unstable depression fracture of lunate fossa (“die-punch”)

  • Moderate/severe medial complex displacement.
  • Comminution of dorsal and volar cortices.
  • IIA – Irreducible, closed fracture.
  • IIB – Irreducible, closed due to impaction
III Type II fracture plus a ‘spike’ of the radius volarly May impinge on the median nerve
IV Split fracture

  • Severe comminution
  • Rotation of fragments.
Unstable
V Explosion injuries

  • Severe displacement/comminution
Often associated with diaphyseal comminution

Frykman Classification

Though the Frykman classification system has traditionally been used, there is little value in its use because it does not help direct treatment. This system focuses on articular and ulnar involvement. The classification is as follows:[rx]

Radius Fracture Ulna Fracture
Absent Present
Extra-articular I II
Intra-articular involving radiocarpal joint III IV
Intra-articular involving DRUJ (distal radio-ulnar joint) V VI
Intra-articular involving both radiocarpal & DRUJ VII VIII

Universal Classification

The Universal classification system is descriptive but also does not direct treatment. Universal codes are:[rx]

Type Location Displacement Sub-type
I Extra-articular Undisplaced
II Extra-articular Displaced A: Reducible, stableB: Reducible, unstable

C: Irreducible

III Intra-articular Undisplaced
IV Intra-articular Displaced A: Reducible, stableB: Reducible, unstable

C: Irreducible

D: Complex

AO/OTA Classification

A widely used system that includes 27 subgroups. Three main groups based on fracture joint involvement (A – extra-articular, B – partial articular, C – complete articular). Classification further defined based on the level of comminution and direction of displacement. A qualification (Q) modifier can be added to classify associated ulnar injury.[rx]

Fernandez classification

The simplified system developed in response to AO classification, intended to be based off injury mechanism with more treatment-oriented classifications (treatment suggestions not meant to be used as rigid guidelines but can be used to help decision making on a case-by-case basis)[rx]

Type Description Stability Number of Fragments Associated Lesions (see below) Recommended Treatment
I Bending fracture – metaphysis Stable or unstable 2 main fragments with variable metaphyseal comminution Uncommon Stable -> conservativeUnstable -> percutaneous pinning or external fixation
II Shearing fracture – articular surface Unstable 2, 3, comminuted Less uncommon Open reduction with screw-plate fixation
III Compression fracture – articular surface Stable or unstable 2, 3, 4, comminuted Common
  • Closed
  • Limited arthroscopic release
  • Extensile open reduction
  • Percutaneous pins plus external and internal fixation
  • Bone Graft
IV Avulsion fracture, radiocarpal fracture, dislocation Unstable 2 (radial/ulnar styloid), 3, comminuted Frequent(especially ligamentous injury) Closed or open reduction with pin/screw fixation or tension wiring
V Combined fracture (high-energy injury) – Often intra-articular and open Unstable Comminuted Always present Combined treatment

Note: Associated Lesions include carpal ligament injury, nerve injury, tendon damage, and compartment syndrome

Causes of Radius Shaft Fractures

Colles’ fracture

  • Sudden forceful  fall down
  • Road traffic accident
  • Falls – Falling onto an outstretched hand is one of the most common causes of a broken radial and ulnar shaft fractures.
  • Sports injuries – Many radials and ulnar shaft fractures occur during contact sports or sports in which you might fall onto an outstretched hand — such as in-line skating or snowboarding.
  • Motor vehicle crashes – Motor vehicle crashes can cause wrist bones to break, sometimes into many pieces, and often require surgical repair.
  • Have osteoporosis –  a disease that weakens your bones
  • Eave low muscle mass or poor muscle strength – or lack agility and have poor balance (these conditions make you more likely to fall)
  • Walk or do other activities in snow or on the ice – or do activities that require a lot of forwarding momenta, such as in-line skating and skiing
  • Wave an inadequate intake of calcium or vitamin D
  • Football or soccer, especially on artificial turf
  • Rugby
  • Horseback riding
  • Hockey
  • Skiing
  • Snowboarding
  • In-line skating
  • Jumping on a trampoline

Symptoms of Radius Shaft Fractures

Common symptoms of radial and ulnar shaft fractures include:

  • Severe pain that might worsen when gripping or squeezing or moving your hand or wrist
  • Swelling
  • Tenderness
  • Bruising
  • Obvious deformity, such as a bent wrist
  • Pain
  • The wrist hanging in a deformed way
  • Pain, especially when flexing the wrist
  • Deformity of the wrist, causing it to look crooked and bent.
  • Your wrist is in great pain.
  • Your wrist, arm, or hand is numb.
  • Your fingers are pale.

Diagnosis of Radius Shaft Fractures

Diagnosis can be made upon the interpretation of anteroposterior and lateral views alone.[rx]

The classic distal radius fractures have the following characteristics:[rx]

  • Transverse fracture of the radial and ulnar shaft fractures
  • dorsal displacement and dorsal angulation, together with radial tilt[rx]

Other characteristics[rx][rx]

  • Radial shortening
  • Loss of ulnar inclination≤
  • Radial angulation of the wrist
  • Comminution at the fracture site
  • Associated fracture of the ulnar styloid process in more than 60% of cases.

Differential Diagnosis/ Associated Injuries

  • Scapholunate ligament tear
  • Median nerve injury
  • TFCC (triangular fibrocartilage complex) injury, up to 50% when ulnar styloid fx also present
  • Carpal ligament injury – Scapholunate Instability(most common), lunotriquetral ligament
  • Tendon injury, attritional EPL rupture, usually treated with EIP tendon transfer
  • Compartment syndrome
  • Ulnar styloid fracture
  • DRUJ (Distal Radial Ulnar Joint) Instability
  • Galeazzi Fracture: highly associated with distal 1/3 radial shaft fractures[rx]
X-ray of a displaced intra-articular radial and ulnar shaft fractures in an external fixator – The articular surface is widely displaced and irregular. Diagnosis may be evident clinically when the radial and ulnar shaft fractures is deformed but should be confirmed by X-ray. The differential diagnosis includes scaphoid fractures and wrist dislocations, which can also co-exist with a radial and ulnar shaft fractures. Occasionally, fractures may not be seen on X-rays immediately after the injury. Delayed X-rays, X-ray computed tomography (CT scan), or Magnetic resonance imaging[rx] (MRI) can confirm the diagnosis.

Medical Imaging

  • Fracture with a dorsal tilt – Dorsal is left, and volar is right in the image.
  • X-ray of the affected wrist is required if a fracture is suspected. Posteroanterior, lateral, and oblique views can be used together to describe the fracture.[rx] X-ray of the uninjured wrist should also be taken to determine if any normal anatomic variations exist before surgery.[rx]
  • A CT scan is often performed to further investigate the articular anatomy of the fracture, especially for fracture and displacement within the distal radio-ulnar joint.[rx]

Various kinds of information can be obtained from X-rays of the wrist:[rx]

Lateral view

  • Carpal malalignment – A line is drawn along the long axis of the capitate bone and another line is drawn along the long axis of the radius. If the carpal bones are aligned, both lines will intersect within the carpal bones. If the carpal bones are not aligned, both lines will intersect outside the carpal bones. Carpal malignment is frequently associated with a dorsal or volar tilt of the radius and will have poor grip strength and poor forearm rotation.[rx]
  • Teardrop angle – It is the angle between the line that passes through the central axis of the volar rim of the lunate facet of the radius and the line that pass through the long axis of the radius. Teardrop angle less than 45 degrees indicates the displacement of the lunate facet.[rx]
  • Anteroposterior distance (AP distance) – Seen on lateral X-ray, it is the distance between the dorsal and volar rim of the lunate facet of the radius. The usual distance is 19 mm.[rx] Increased AP distance indicates the lunate facet fracture.[rx]
  • Volar or dorsal tilt – A line is drawn joining the most distal ends of the volar and dorsal side of the radius. Another line perpendicular to the longitudinal axis of the radius is drawn. The angle between the two lines is the angle of volar or dorsal tilt of the wrist. Measurement of volar or dorsal tilt should be made in true lateral view of the wrist because pronation of the forearm reduces the volar tilt and supination increases it. When the dorsal tilt is more than 11 degrees, it is associated with loss of grip strength and loss of wrist flexion.[rx]

Posteroanterior view

  • Radial inclination – It is the angle between a line drawn from the radial and ulnar shaft fractures to the medial end of the articular surface of the radius and a line drawn perpendicular to the long axis of the radius. Loss of radial inclination is associated with loss of grip strength.[rx]
  • Radial length – It is the vertical distance in millimeters between a line tangential to the articular surface of the ulna and a tangential line drawn at the most distal point of radius (radial styloid). [rx]
  • Ulnar variance – It is the vertical distance between a horizontal line parallel to the articular surface of the radius and another horizontal line drawn parallel to the articular surface of the ulnar head. Positive ulnar variance (ulna appears longer than radius) disturbs the integrity of triangular fibrocartilage complex and is associated with loss of grip strength and wrist pain.[rx]

Oblique view

  • Pronated oblique view of the distal radius helps to show the degree of comminution of the radial and ulnar shaft fractures, depression of the radial styloid and confirming the position the screws at the radial side of the distal end radius. Meanwhile, a supinated oblique view of shows the ulnar side of the distal radius, accessing the depression of dorsal rim of the lunate facet, and the position of the screws on the ulnar side of the distal end radius.[rx]

Plain radiographs

  • Radiographic imaging is important in diagnosis, classification, treatment and follow-up assessment of these fractures. The routine minimal evaluation for radial and ulnar shaft fractures must include two views-a postero-anterior (PA) view and lateral view.[rx]
  • The PA view should be obtained with the humerus abducted 90 degrees from the chest wall, so that the elbow is at the same level as the shoulder and flexed 90 degrees.[rx] The palm is maintained flat against the cassette

Computed Tomography

  • CT may be useful and can give significant information in comparison with that obtained with conventional radiography in the evaluation of complex or occult fractures, radial and ulnar shaft articular surface, distal radio-ulnar joint, ventromedial fracture fragment (as described by Melone),[rx] assessments of fracture healing as well as post-surgical evaluation.[rx]
  • CT may be indicated for the confirmation of occult fractures suspected on the basis of physical examination when plain films are normal.

Magnetic Resonance Imaging

  • Although this modality is not the first choice in evaluating acute distal radius fractures, it is a powerful diagnostic tool to assess bony, ligamentous and soft tissue abnormalities associated with these fractures.
  • MRI has proved to be a very important diagnostic tool for delineating perforation of triangular fibrocartilage complex (TFCC),[rx] perforation of interosseous ligaments of the proximal carpal row, evaluating occult fractures, post-traumatic or avascular necrosis of carpal bones.

Treatment of Radius Shaft Fractures

Non-Surgical

Treatment available can be broadly

  • Get medical help immediately – If you fall on an outstretched arm, get into a car accident or are hit while playing a sport and feel intense pain in your shoulder area, then get medical care immediately. Radial and ulnar shaft fractures cause significant pain in the front part of your shoulder, closer to the base of your neck. You’ll innately know that something is seriously wrong because you won’t be able to lift your arm up. Other symptoms include immediate swelling and/or bruising near the fracture, grinding sounds with arm movements and potential numbness and tingling in the arm/hand.
  • Apply ice to your fractured clavicle – After you get home from the hospital radial and ulnar shaft fractures (regardless if you had surgery or not), you should apply a bag of crushed ice (or something cold) to your injured in order to reduce the swelling and numb the pain. Ice therapy is effective for acute (recent) injuries that involve swelling because it reduces blood flow by constricting local blood vessels. Apply the crushed ice to your clavicle for 15 minutes three to five times daily until the soreness and inflammation eventually fades away
    Lightly exercise after the pain fades – After a couple of weeks when the swelling has subsided and the pain has faded away, remove your arm sling for short periods and carefully move your arm and shoulder in all different directions. Don’t aggravate the radial and ulnar shaft fractures so that it hurts, but gently reintroduce movements to the involved joints and muscles. Start cautiously, maybe starting with light calisthenics and then progress to holding light weights (five-pound weights to start). Your distal radius fractures need to move a little bit during the later phases of the injury to stimulate complete recovery.
  • Practice stretching and strengthening exercises – of the fingers, elbow, and shoulder if your doctor recommends them.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for six to eight weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)
  • Get a supportive arm sling – Due to their anatomical position, distal radius fractures can’t be cast like a broken limb can. Instead, a supportive arm sling or “figure-eight” splint is typically used for support and comfort, either immediately after the injury if it’s just a hairline fracture or following surgery, if it’s a complicated fracture. A figure-eight splint wraps around both shoulders and the base of your neck in order to support the injured shoulder and keep it positioned up and back. Sometimes a larger swath of material is wrapped around the sling to keep it closer to your body. You’ll need to wear the sling constantly until there is no pain with arm movements, which takes between two to four weeks for children or four to eight weeks for adults.
  • Get a referral to physical therapy – Once you’ve recovered and able to remove your arm sling splint for good, you’ll likely notice that the muscles surrounding your shoulder and upper chest look smaller and feel weaker. That’s because muscle tissue atrophies without movement. If this occurs, then you’ll need to get a referral for some physical rehabilitation. Rehab can start once you are cleared by your orthopedist, are pain-free, and can perform all the basic arm and shoulder movements. A physiotherapist or athletic trainer can show you specific rehabilitation exercises and stretches to restore your muscle strength, joint movements, and flexibility
  • Rigid fixation – osteosynthesis with locking plate, hook plate fixation, fixation with radial and ulnar shaft locking plate, coracoclavicular screws, Knowles pin fixation.
  • Flexible fixation – simple k wire fixation, tension band wiring, suture anchors, vicryl tape, dacron arterial graft for coracoclavicular ligament reconstruction.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for six to eight weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)

Rest your Hand

Once you’re discharged from the hospital in an arm sling, your top priority is to rest your shoulder and not further inflame the injury. Of course, the arm sling not only provides support, but it also restricts movement, which is why you should keep it on even during sleep. Avoiding the temptation to move your shoulder and arm will help the bone mend quicker and the pain fades away sooner.
  • Depending on what you do for a living and if the injury is to your dominant side, you may need to take a couple of weeks off work to recuperate.
  • Healing takes between four to six weeks in younger people and up to 12 weeks in the elderly, but it depends on the severity of the radial and ulnar shaft fractures.
  • Athletes in good health are typically able to resume their sporting activities within two months of breaking they’re ulnar styloid depending on the severity of the break and the specific sport.
  • Sleeping on your back (with the sling on) is necessary to keep the pressure off your shoulder and prevent stressing the clavicle injury.

Eat nutritiously during your recovery

All bones and tissues in the body need certain nutrients in order to heal properly and in a timely manner. Eating a nutritious and balanced diet that includes lots of minerals and vitamins is proven to help heal broken bones of all types, including ulnar styloid. Therefore, focus on eating lots of fresh produce (fruits and veggies), whole grains, lean meats, and fish to give your body the building blocks needed to properly repair your radial and ulnar shaft fractures. In addition, drink plenty of purified water, milk, and other dairy-based beverages to augment what you eat.

  • Broken bones need ample minerals (calcium, phosphorus, magnesium, boron) and protein to become strong and healthy again.
  • Excellent sources of minerals/protein include dairy products, tofu, beans, broccoli, nuts and seeds, sardines and salmon.
  • Important vitamins that are needed for bone healing include vitamin C (needed to make collagen), vitamin D (crucial for mineral absorption), and vitamin K (binds calcium to bones and triggers collagen formation).
  • Conversely, don’t consume food or drink that is known to impair bone/tissue healing, such as alcoholic beverages, sodas, most fast food items and foods made with lots of refined sugars and preservatives.

Physical therapy

  • Although there will be some pain, it is important to maintain arm motion to prevent stiffness. Often, patients will begin doing exercises for elbow motion immediately after the injury.  After a radial and ulnar shaft fractures, it is common to lose some shoulder and arm strength. Once the bone begins to heal, your pain will decrease and your doctor may start gentle shoulder exercises. These exercises will help prevent stiffness and weakness. More strenuous exercises will be started gradually once the fracture is completely healed.

Follow-up care

  • You will need to see your doctor regularly until your fracture heals. During these visits, he or will take x-rays to make sure the bone is healing in a good position. After the bone has healed, you will be able to gradually return to your normal activities.

Breathing Exercise

  • To elevate breathing problem or remove the lung congestion if needed.

Medication

Closed Reduction and Casting

  • All fractures characterized by minor comminution, without or with minimal displacements can be considered for closed reduction and cast immobilization. Mainly type I and type IIA Melone’s fracture can be managed conservatively. The fracture should be kept under closed observation to look for any re-displacement.
  • Despite the widespread acceptance of immobilization in a plaster cast, questions remain regarding the optimum position, the duration of immobilization and the need to extend the cast proximal to the elbow. No clear consensus exists as to the best position for immobilizing the wrist in plaster. Sarmiento et al.[rx] advocated immobilization in a position of supination to decrease the deforming force of the brachioradialis, which may cause loss of reduction.

Pins and Plaster Technique

  • Placement of pins in the metacarpals and forearm was initially advocated by Bohler in 1923, but it gained popularity after the report by Green, who showed good or excellent results in 86% of his patients.[rx]
  • However, he noted a high incidence of minor or major complications, one-third of which were related to pin site only. Other researchers also noted that one-third of the complications were related to pins and 16% of the patients needed reoperation for complications.[rx]

Percutaneous Pinning

  • Extra-articular fractures of the distal end of the radius with extensive comminution or the fractures that have no more than two articular fragments, in which anatomical reduction is obtainable, are amenable to percutaneous pinning of the fracture fragments and application of a plaster cast. A single pin placed through the radial styloid as a means of stabilizing the displaced fracture fragment was first suggested by Lambotte in 1908.[rx,rx]

External Fixation

  • External fixation is generally accepted as superior to plaster immobilization in the young patients with an intra-articular comminuted fracture of the radial and ulnar shaft fractures. Other indications for external fixation include some unstable extra-articular fractures with significant comminution and failure to maintain reduction after an initial attempt at closed management in a cast, certain situations of multiple trauma, the presence of dysfunctional contralateral limb, severe open fractures with significant soft tissue injury and neurovascular compromise, and bilateral injuries.[rx]

Limited Open Reduction

  • In intra-articular fractures that have more than 2 mm of displacement, the radio-carpal joint may be incongruent despite adequate attempts at reduction. The incongruency usually involves the lunate part of the distal end of the radius.
  • The radial styloid process and scaphoid facet are more amenable to reduction through ligamentotaxis or by manipulation and reduction.
  • A new technique of combining external fixation with open reduction of the displaced lunate fossa through a small, longitudinal incision and elevation of the impacted fragment without direct visualization of the surface of the joint has been described.[rx]

Open Reduction and Internal Fixation

  • One of the recent advances in the treatment of radial and ulnar shaft fractures is the more frequent application of open reduction and internal fixation, especially for intra-articular fractures. There are two groups of fractures for which open reduction and internal fixation is advisable.

Arthroscopic-Assisted Fracture Reduction

  • Intra-articular fractures of the radius can be arthroscopically assessed, and reduction of the articular components and assessment and repair of ligamentous injury can then be undertaken.[rx,rx,rx] The ideal timing for arthroscopically assisted radial and ulnar shaft fractures surgery is 3 to 7 days after injury.

Rehabilitation Guideline for Non-Operative/Conservative rehabilitation [rx]

Acute Stage (0-8 weeks)

Goals

  • Protection with short-arm cast
  • Control pain and edema
  • Maintain range in digits, elbows, shoulder

Interventions

  • AROM and PROM of digits, elbow, shoulder
  • Elevation of hand and digits to control edema
  • Cast removal between 6-8 weeks

Sub Acute Stage

Goal

  • Control pain and edema (TENS, ice)
  • Increase ROM
  • Increase activities of daily living (ADLs)

Interventions

  • AROM and PROM of digits, elbow, shoulder
  • AROM wrist flexion/ extension, forearm supination/ pronation
  • PROM of low load and prolonged stretch

Settled Stage

Goals

  • Regain full ROM
  • Begin strengthening
  • Return to activity

Interventions

  • Continue all ROM exercises
  • Progress to the strengthening of all joints[rx]

Rehabilitation Guideline for External Fixation by Pho et al

Acute Stage (1-6 weeks)

Goals

  • Control pain and edema (TENS, ice)
  • Protect surgical site
  • Maintain ROM of digits, elbow, shoulder

Interventions

  • Elevation
  • AROM of digits, elbow, shoulder
  • AROM forearm supination/ pronation

Sub Acute (7-10 weeks)

Goal

  • Protect fracture site
  • Control pain and edema (TENS, ice)
  • ROM of involved and uninvolved joints

Interventions

  • AROM and PROM of wrist extension/ flexion, radial deviation, and supination/ pronation

Settled Stage (10-16 weeks)

Goal

  • Regain full ROM
  • Begin strengthening
  • Increase tolerance to ADLs

Interventions

  • ROM of wrist flexion/ extension, radial/ ulnar deviation, forearm supination/ pronation progressing to isometric exercises and resisted exercises using dumbbells or resistive bands
  • PROM of low load and prolonged stretching of wrist motions
  • Grip strengthening
  • ADL training within tolerance[rx]

Cryotherapy

  • Cryotherapy is an effective modality for controlling edema in the acute phase after trauma and during rehab due to its ability in helping to decrease blood flow through vasoconstriction limiting the amount of fluid escaping from capillaries to the interstitial fluid[rx]. Cryotherapy can also be combined with compression and elevation in the treatment of edema.[rx]
  • To control pain using cryotherapy, the modality should be applied to the area for 10-15 minutes which can result in pain control up to 2 hours post application.[rx]Precautions for the use of cryotherapy include: over a superficial branch of the nerve, over an open wound, poor sensation or mentation, and very young or very old patients.[rx] Contraindications for cryotherapy include; Acute febrile illness, Vasospasm e.g. Raynaud’s disease, Cryoglobulinemia, Cold urticaria.[rx]

Electrical Stimulation

  • The use of transcutaneous electrical nerve stimulation (TENS) may be used as an adjunct during any phase of rehab to address pain but can be particularly useful for patients that are increasing the level of activity of the wrist. Conventional (high-rate) TENS is useful for disrupting the pain cycle through a prolonged treatment session as great as 24 hours a day.[rx]
  • Low-rate TENS is another form of electrical stimulation that is successful in diminishing pain by targeting motor or nociceptive A-delta nerves. Low-rate TENS has been reported to be effective in pain control for up to 4-5 hours post-treatment.[rx]
  • The literature is still not conclusive on this topic and the results of one study may contradict or, on the contrary, reinforce the results of another study. Yet there is evidence supporting the beneficial effects of electrical stimulation, especially in combination with physiotherapy exercises.

Supervised Active rehabilitation program used in Study

ISOMETRIC EXERCISE

  • Wrist flexors and extensors

ACTIVE RANGE OF MOTION EXERCISE

  • Assisted stretch to forearm flexors and extensor musculature and radial/ulnar deviation
  • Weight-bearing wrist extension exercise(hand on the table with the patient leaning forward on them) to patient tolerance
  • Active stretch to shoulder girdle and rotator cuff musculature
  • Active stretch to elbow flexor and extensor musculature

INTRINSIC HAND MUSCLE EXERCISE

  • Thumb/digit opposition
  • Repetitive squeezing of therapy
  • repetitive towel wringing exercise

STRENGTHENING ROUTINE

  • Biceps curl with 1,5-2 pound weights bilaterally
  • Shoulder abduction, flexion and extension reps with 2-pound weights bilaterally
  • Repetitive squeezing of a rubber ball in affected wrist
  • Flexion and extension of wrist using 1,5-pound weights increasing as tolerated

FUNCTIONAL ACTIVITIES

  • The patient is encouraged to resume pre-accident activities that involve the affected extremity (eg. writing, typing, cooking, etc.)

Complications of Radius Shaft Fractures

There were no major complications such as neurovascular injury, infection, or impaired wound healing. Surgery-related complication at 2-year follow-up included nonunion in 3 patients (11%),

  • DRUJ subluxation in 3 patients (11%),
  • Implant migration in 4 patients (14%),
  • Radiographic resorption of the ulnar styloid in 4 patients (14%).
  • Radiographic nonunion was noted in 1 patient in group A (8%) and 2 in group B (13%). Residual DRUJ subluxation was noted in 3 patients; all were in group B (20%).
  • Partial or complete radiographic resorption of the ulna was found in 1 patient in group A (8%) and 3 in group B (20%).
  • Implant migration was noted in 1 patient in group A (8%), and 2 in group B (13%).
  • Subsequent removal surgery due to implant irritation occurred in 13 patients (46%), with 4 in group A (31%) and 8 in group B (53%).
  • A total of 11 patients (39%) with surgery-related complications included 5 (38%) in group A and 12 (80%) in group B, with a significant difference

There are risks associated with any type of surgery. These include

  • Nonunion (1-5%)
  • Infection (~4.8%)
  • 4% in the surgical group develop adhesive capsulitis requiring surgical intervention
  • Bleeding
  • Problems with wound healing
  • Blood clots
  • Damage to blood vessels or nerves
  • Reaction to anesthesia
  • Hardware prominence
  • Malunion with cosmetic deformity
  • Restriction of ROM
  • The difficulty with bone healing
  • Hardware irritation
  • Fracture comminution (Z deformity)
  • Fracture displacement
  • Increased fatigue with overhead activities
  • Dissatisfaction with appearance
  • The difficulty with shoulder straps, backpacks and the like
  • ~30% of patient request plate removal
  • Superior plates associated with increased irritation
  • Superior plates associated with increased risk of subclavian artery or vein penetration

References

Radius Shaft Fractures

By

Radial and Ulnar Shaft Fractures, Diagnosis, Treatment

Radial and ulnar shaft fractures most commonly occur after a fall onto an outstretched arm.  In fractures requiring reduction, the clinical deformity is usually readily apparent.  Patients should be assessed for evidence of open fracture, ipsilateral fracture proximal or distal to the forearm, and baseline neurovascular status as these will all influence ultimate treatment.

The forearm consists of two parallel bones (radius and ulna) and radioulnar joints of the elbow and wrist, which play an important role in forearm rotation. Shaft fractures involving these bones, if inadequately treated, can result in a significant loss of motion of the forearm. Although the displacement of shaft fractures of both forearm bones (SFBFBs) is influenced by the direction of external force, the radial fracture is further influenced by muscle contraction based on the location of shaft fracture. Reduction of anatomical relationships such as the length of both bones, rotational alignment, radial bowing, and interosseous space between the radius and the ulna are important to restore the function of the forearm.[rx,rx]

Mechanism of Radial and Ulnar Shaft Fractures

Most of the fractures are caused by a fall on the outstretched hand with the wrist in dorsiflexion. The form and severity of fracture of radial and ulnar shaft fractures as well as the concomitant injury of disco-ligamentary structures of the wrist also depend on the position of the wrist at the moment of hitting the ground. The width of this angle influences the localization of the fracture. Pronation, supination, and abduction determine the direction of the force and the compression of the carpus and different appearances of ligament injuries.[rx]

The radius initially fails in tension on the volar aspect, with the fracture progressing dorsally where bending forces induce compressive stresses, resulting in dorsal comminution. Cancellous impaction of the metaphysis further compromises dorsal stability. Additional shearing forces influence the injury pattern, resulting in articular surface involvement.[rx]

Types of Radial and Ulnar Shaft Fractures

Melone classification

The system that comes closest to directing treatment has been devised by Melone. This system breaks radial and ulnar shaft fractures down into 4 components: radial styloid, dorsal medial fragment, volar medial fragment, and radial shaft. The two medial fragments (which together create the lunate fossa) are grouped together as the medial complex.[rx]

Type Description Note
I No displacement of a medial complex

  • No comminution.
Fracture is stable after closed reduction
II Unstable depression fracture of lunate fossa (“die-punch”)

  • Moderate/severe medial complex displacement.
  • Comminution of dorsal and volar cortices.
  • IIA – Irreducible, closed fracture.
  • IIB – Irreducible, closed due to impaction
III Type II fracture plus a ‘spike’ of the radius volarly May impinge on the median nerve
IV Split fracture

  • Severe comminution
  • Rotation of fragments.
Unstable
V Explosion injuries

  • Severe displacement/comminution
Often associated with diaphyseal comminution

Frykman Classification

Though the Frykman classification system has traditionally been used, there is little value in its use because it does not help direct treatment. This system focuses on articular and ulnar involvement. The classification is as follows:[rx]

Radius Fracture Ulna Fracture
Absent Present
Extra-articular I II
Intra-articular involving radiocarpal joint III IV
Intra-articular involving DRUJ (distal radio-ulnar joint) V VI
Intra-articular involving both radiocarpal & DRUJ VII VIII

Universal Classification

The Universal classification system is descriptive but also does not direct treatment. Universal codes are:[rx]

Type Location Displacement Sub-type
I Extra-articular Undisplaced
II Extra-articular Displaced A: Reducible, stableB: Reducible, unstable

C: Irreducible

III Intra-articular Undisplaced
IV Intra-articular Displaced A: Reducible, stableB: Reducible, unstable

C: Irreducible

D: Complex

AO/OTA Classification

A widely used system that includes 27 subgroups. Three main groups based on fracture joint involvement (A – extra-articular, B – partial articular, C – complete articular). Classification further defined based on the level of comminution and direction of displacement. A qualification (Q) modifier can be added to classify associated ulnar injury.[rx]

Fernandez classification

The simplified system developed in response to AO classification, intended to be based off injury mechanism with more treatment-oriented classifications (treatment suggestions not meant to be used as rigid guidelines but can be used to help decision making on a case-by-case basis)[rx]

Type Description Stability Number of Fragments Associated Lesions (see below) Recommended Treatment
I Bending fracture – metaphysis Stable or unstable 2 main fragments with variable metaphyseal comminution Uncommon Stable -> conservativeUnstable -> percutaneous pinning or external fixation
II Shearing fracture – articular surface Unstable 2, 3, comminuted Less uncommon Open reduction with screw-plate fixation
III Compression fracture – articular surface Stable or unstable 2, 3, 4, comminuted Common
  • Closed
  • Limited arthroscopic release
  • Extensile open reduction
  • Percutaneous pins plus external and internal fixation
  • Bone Graft
IV Avulsion fracture, radiocarpal fracture, dislocation Unstable 2 (radial/ulnar styloid), 3, comminuted Frequent(especially ligamentous injury) Closed or open reduction with pin/screw fixation or tension wiring
V Combined fracture (high-energy injury) – Often intra-articular and open Unstable Comminuted Always present Combined treatment

Note: Associated Lesions include carpal ligament injury, nerve injury, tendon damage, and compartment syndrome

Causes of Radial and Ulnar Shaft Fractures

Colles’ fracture

  • Sudden forceful  fall down
  • Road traffic accident
  • Falls – Falling onto an outstretched hand is one of the most common causes of a broken radial and ulnar shaft fractures.
  • Sports injuries – Many radial and ulnar shaft fractures occur during contact sports or sports in which you might fall onto an outstretched hand — such as in-line skating or snowboarding.
  • Motor vehicle crashes – Motor vehicle crashes can cause wrist bones to break, sometimes into many pieces, and often require surgical repair.
  • Have osteoporosis –  a disease that weakens your bones
  • Eave low muscle mass or poor muscle strength – or lack agility and have poor balance (these conditions make you more likely to fall)
  • Walk or do other activities in snow or on the ice – or do activities that require a lot of forwarding momenta, such as in-line skating and skiing
  • Wave an inadequate intake of calcium or vitamin D
  • Football or soccer, especially on artificial turf
  • Rugby
  • Horseback riding
  • Hockey
  • Skiing
  • Snowboarding
  • In-line skating
  • Jumping on a trampoline

Symptoms of Radial and Ulnar Shaft Fractures

Common symptoms of radial and ulnar shaft fractures include:

  • Severe pain that might worsen when gripping or squeezing or moving your hand or wrist
  • Swelling
  • Tenderness
  • Bruising
  • Obvious deformity, such as a bent wrist
  • Pain
  • The wrist hanging in a deformed way
  • Pain, especially when flexing the wrist
  • Deformity of the wrist, causing it to look crooked and bent.
  • Your wrist is in great pain.
  • Your wrist, arm, or hand is numb.
  • Your fingers are pale.

Diagnosis of Radial and Ulnar Shaft Fractures

Diagnosis can be made upon the interpretation of anteroposterior and lateral views alone.[rx]

The classic distal radius fractures have the following characteristics:[rx]

  • Transverse fracture of the radial and ulnar shaft fractures
  • dorsal displacement and dorsal angulation, together with radial tilt[rx]

Other characteristics[rx][rx]

  • Radial shortening
  • Loss of ulnar inclination≤
  • Radial angulation of the wrist
  • Comminution at the fracture site
  • Associated fracture of the ulnar styloid process in more than 60% of cases.

Differential Diagnosis/ Associated Injuries

  • Scapholunate ligament tear
  • Median nerve injury
  • TFCC (triangular fibrocartilage complex) injury, up to 50% when ulnar styloid fx also present
  • Carpal ligament injury – Scapholunate Instability(most common), lunotriquetral ligament
  • Tendon injury, attritional EPL rupture, usually treated with EIP tendon transfer
  • Compartment syndrome
  • Ulnar styloid fracture
  • DRUJ (Distal Radial Ulnar Joint) Instability
  • Galeazzi Fracture: highly associated with distal 1/3 radial shaft fractures[rx]
X-ray of a displaced intra-articular radial and ulnar shaft fractures in an external fixator – The articular surface is widely displaced and irregular. Diagnosis may be evident clinically when the radial and ulnar shaft fractures is deformed but should be confirmed by X-ray. The differential diagnosis includes scaphoid fractures and wrist dislocations, which can also co-exist with a radial and ulnar shaft fractures. Occasionally, fractures may not be seen on X-rays immediately after the injury. Delayed X-rays, X-ray computed tomography (CT scan), or Magnetic resonance imaging[rx] (MRI) can confirm the diagnosis.

Medical Imaging

  • Fracture with a dorsal tilt – Dorsal is left, and volar is right in the image.
  • X-ray of the affected wrist is required if a fracture is suspected. Posteroanterior, lateral, and oblique views can be used together to describe the fracture.[rx] X-ray of the uninjured wrist should also be taken to determine if any normal anatomic variations exist before surgery.[rx]
  • A CT scan is often performed to further investigate the articular anatomy of the fracture, especially for fracture and displacement within the distal radio-ulnar joint.[rx]

Various kinds of information can be obtained from X-rays of the wrist:[rx]

Lateral view

  • Carpal malalignment – A line is drawn along the long axis of the capitate bone and another line is drawn along the long axis of the radius. If the carpal bones are aligned, both lines will intersect within the carpal bones. If the carpal bones are not aligned, both lines will intersect outside the carpal bones. Carpal malignment is frequently associated with a dorsal or volar tilt of the radius and will have poor grip strength and poor forearm rotation.[rx]
  • Teardrop angle – It is the angle between the line that passes through the central axis of the volar rim of the lunate facet of the radius and the line that pass through the long axis of the radius. Teardrop angle less than 45 degrees indicates the displacement of the lunate facet.[rx]
  • Anteroposterior distance (AP distance) – Seen on lateral X-ray, it is the distance between the dorsal and volar rim of the lunate facet of the radius. The usual distance is 19 mm.[rx] Increased AP distance indicates the lunate facet fracture.[rx]
  • Volar or dorsal tilt – A line is drawn joining the most distal ends of the volar and dorsal side of the radius. Another line perpendicular to the longitudinal axis of the radius is drawn. The angle between the two lines is the angle of volar or dorsal tilt of the wrist. Measurement of volar or dorsal tilt should be made in true lateral view of the wrist because pronation of the forearm reduces the volar tilt and supination increases it. When the dorsal tilt is more than 11 degrees, it is associated with loss of grip strength and loss of wrist flexion.[rx]

Posteroanterior view

  • Radial inclination – It is the angle between a line drawn from the radial and ulnar shaft fractures to the medial end of the articular surface of the radius and a line drawn perpendicular to the long axis of the radius. Loss of radial inclination is associated with loss of grip strength.[rx]
  • Radial length – It is the vertical distance in millimeters between a line tangential to the articular surface of the ulna and a tangential line drawn at the most distal point of radius (radial styloid). [rx]
  • Ulnar variance – It is the vertical distance between a horizontal line parallel to the articular surface of the radius and another horizontal line drawn parallel to the articular surface of the ulnar head. Positive ulnar variance (ulna appears longer than radius) disturbs the integrity of triangular fibrocartilage complex and is associated with loss of grip strength and wrist pain.[rx]

Oblique view

  • Pronated oblique view of the distal radius helps to show the degree of comminution of the radial and ulnar shaft fractures, depression of the radial styloid and confirming the position the screws at the radial side of the distal end radius. Meanwhile, a supinated oblique view of shows the ulnar side of the distal radius, accessing the depression of dorsal rim of the lunate facet, and the position of the screws on the ulnar side of the distal end radius.[rx]

Plain radiographs

  • Radiographic imaging is important in diagnosis, classification, treatment and follow-up assessment of these fractures. The routine minimal evaluation for radial and ulnar shaft fractures must include two views-a postero-anterior (PA) view and lateral view.[rx]
  • The PA view should be obtained with the humerus abducted 90 degrees from the chest wall, so that the elbow is at the same level as the shoulder and flexed 90 degrees.[rx] The palm is maintained flat against the cassette

Computed Tomography

  • CT may be useful and can give significant information in comparison with that obtained with conventional radiography in the evaluation of complex or occult fractures, radial and ulnar shaft articular surface, distal radio-ulnar joint, ventromedial fracture fragment (as described by Melone),[rx] assessments of fracture healing as well as post-surgical evaluation.[rx]
  • CT may be indicated for the confirmation of occult fractures suspected on the basis of physical examination when plain films are normal.

Magnetic Resonance Imaging

  • Although this modality is not the first choice in evaluating acute distal radius fractures, it is a powerful diagnostic tool to assess bony, ligamentous and soft tissue abnormalities associated with these fractures.
  • MRI has proved to be a very important diagnostic tool for delineating perforation of triangular fibrocartilage complex (TFCC),[rx] perforation of interosseous ligaments of the proximal carpal row, evaluating occult fractures, post-traumatic or avascular necrosis of carpal bones.

Treatment of Radial and Ulnar Shaft Fractures

Non-Surgical

Treatment available can be broadly

  • Get medical help immediately – If you fall on an outstretched arm, get into a car accident or are hit while playing a sport and feel intense pain in your shoulder area, then get medical care immediately. Radial and ulnar shaft fractures cause significant pain in the front part of your shoulder, closer to the base of your neck. You’ll innately know that something is seriously wrong because you won’t be able to lift your arm up. Other symptoms include immediate swelling and/or bruising near the fracture, grinding sounds with arm movements and potential numbness and tingling in the arm/hand.
  • Apply ice to your fractured clavicle – After you get home from the hospital radial and ulnar shaft fractures (regardless if you had surgery or not), you should apply a bag of crushed ice (or something cold) to your injured in order to reduce the swelling and numb the pain. Ice therapy is effective for acute (recent) injuries that involve swelling because it reduces blood flow by constricting local blood vessels. Apply the crushed ice to your clavicle for 15 minutes three to five times daily until the soreness and inflammation eventually fades away
    Lightly exercise after the pain fades – After a couple of weeks when the swelling has subsided and the pain has faded away, remove your arm sling for short periods and carefully move your arm and shoulder in all different directions. Don’t aggravate the radial and ulnar shaft fractures so that it hurts, but gently reintroduce movements to the involved joints and muscles. Start cautiously, maybe starting with light calisthenics and then progress to holding light weights (five-pound weights to start). Your distal radius fractures need to move a little bit during the later phases of the injury to stimulate complete recovery.
  • Practice stretching and strengthening exercises – of the fingers, elbow, and shoulder if your doctor recommends them.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for six to eight weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)
  • Get a supportive arm sling – Due to their anatomical position, distal radius fractures can’t be cast like a broken limb can. Instead, a supportive arm sling or “figure-eight” splint is typically used for support and comfort, either immediately after the injury if it’s just a hairline fracture or following surgery, if it’s a complicated fracture. A figure-eight splint wraps around both shoulders and the base of your neck in order to support the injured shoulder and keep it positioned up and back. Sometimes a larger swath of material is wrapped around the sling to keep it closer to your body. You’ll need to wear the sling constantly until there is no pain with arm movements, which takes between two to four weeks for children or four to eight weeks for adults.
  • Get a referral to physical therapy – Once you’ve recovered and able to remove your arm sling splint for good, you’ll likely notice that the muscles surrounding your shoulder and upper chest look smaller and feel weaker. That’s because muscle tissue atrophies without movement. If this occurs, then you’ll need to get a referral for some physical rehabilitation. Rehab can start once you are cleared by your orthopedist, are pain-free, and can perform all the basic arm and shoulder movements. A physiotherapist or athletic trainer can show you specific rehabilitation exercises and stretches to restore your muscle strength, joint movements, and flexibility
  • Rigid fixation – osteosynthesis with locking plate, hook plate fixation, fixation with radial and ulnar shaft locking plate, coracoclavicular screws, Knowles pin fixation.
  • Flexible fixation – simple k wire fixation, tension band wiring, suture anchors, vicryl tape, dacron arterial graft for coracoclavicular ligament reconstruction.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for six to eight weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)

Rest your Hand

Once you’re discharged from the hospital in an arm sling, your top priority is to rest your shoulder and not further inflame the injury. Of course, the arm sling not only provides support, but it also restricts movement, which is why you should keep it on even during sleep. Avoiding the temptation to move your shoulder and arm will help the bone mend quicker and the pain fades away sooner.
  • Depending on what you do for a living and if the injury is to your dominant side, you may need to take a couple of weeks off work to recuperate.
  • Healing takes between four to six weeks in younger people and up to 12 weeks in the elderly, but it depends on the severity of the radial and ulnar shaft fractures.
  • Athletes in good health are typically able to resume their sporting activities within two months of breaking they’re ulnar styloid depending on the severity of the break and the specific sport.
  • Sleeping on your back (with the sling on) is necessary to keep the pressure off your shoulder and prevent stressing the clavicle injury.

Eat nutritiously during your recovery

All bones and tissues in the body need certain nutrients in order to heal properly and in a timely manner. Eating a nutritious and balanced diet that includes lots of minerals and vitamins is proven to help heal broken bones of all types, including ulnar styloid. Therefore, focus on eating lots of fresh produce (fruits and veggies), whole grains, lean meats, and fish to give your body the building blocks needed to properly repair your radial and ulnar shaft fractures. In addition, drink plenty of purified water, milk, and other dairy-based beverages to augment what you eat.

  • Broken bones need ample minerals (calcium, phosphorus, magnesium, boron) and protein to become strong and healthy again.
  • Excellent sources of minerals/protein include dairy products, tofu, beans, broccoli, nuts and seeds, sardines and salmon.
  • Important vitamins that are needed for bone healing include vitamin C (needed to make collagen), vitamin D (crucial for mineral absorption), and vitamin K (binds calcium to bones and triggers collagen formation).
  • Conversely, don’t consume food or drink that is known to impair bone/tissue healing, such as alcoholic beverages, sodas, most fast food items and foods made with lots of refined sugars and preservatives.

Physical therapy

  • Although there will be some pain, it is important to maintain arm motion to prevent stiffness. Often, patients will begin doing exercises for elbow motion immediately after the injury.  After a radial and ulnar shaft fractures, it is common to lose some shoulder and arm strength. Once the bone begins to heal, your pain will decrease and your doctor may start gentle shoulder exercises. These exercises will help prevent stiffness and weakness. More strenuous exercises will be started gradually once the fracture is completely healed.

Follow-up care

  • You will need to see your doctor regularly until your fracture heals. During these visits, he or will take x-rays to make sure the bone is healing in a good position. After the bone has healed, you will be able to gradually return to your normal activities.

Breathing Exercise

  • To elevate breathing problem or remove the lung congestion if needed.

Medication

Closed Reduction and Casting

  • All fractures characterized by minor comminution, without or with minimal displacements can be considered for closed reduction and cast immobilization. Mainly type I and type IIA Melone’s fracture can be managed conservatively. The fracture should be kept under closed observation to look for any re-displacement.
  • Despite the widespread acceptance of immobilization in a plaster cast, questions remain regarding the optimum position, the duration of immobilization and the need to extend the cast proximal to the elbow. No clear consensus exists as to the best position for immobilizing the wrist in plaster. Sarmiento et al.[rx] advocated immobilization in a position of supination to decrease the deforming force of the brachioradialis, which may cause loss of reduction.

Pins and Plaster Technique

  • Placement of pins in the metacarpals and forearm was initially advocated by Bohler in 1923, but it gained popularity after the report by Green, who showed good or excellent results in 86% of his patients.[rx]
  • However, he noted a high incidence of minor or major complications, one-third of which were related to pin site only. Other researchers also noted that one-third of the complications were related to pins and 16% of the patients needed reoperation for complications.[rx]

Percutaneous Pinning

  • Extra-articular fractures of the distal end of the radius with extensive comminution or the fractures that have no more than two articular fragments, in which anatomical reduction is obtainable, are amenable to percutaneous pinning of the fracture fragments and application of a plaster cast. A single pin placed through the radial styloid as a means of stabilizing the displaced fracture fragment was first suggested by Lambotte in 1908.[rx,rx]

External Fixation

  • External fixation is generally accepted as superior to plaster immobilization in the young patients with an intra-articular comminuted fracture of the radial and ulnar shaft fractures. Other indications for external fixation include some unstable extra-articular fractures with significant comminution and failure to maintain reduction after an initial attempt at closed management in a cast, certain situations of multiple trauma, the presence of dysfunctional contralateral limb, severe open fractures with significant soft tissue injury and neurovascular compromise, and bilateral injuries.[rx]

Limited Open Reduction

  • In intra-articular fractures that have more than 2 mm of displacement, the radio-carpal joint may be incongruent despite adequate attempts at reduction. The incongruency usually involves the lunate part of the distal end of the radius.
  • The radial styloid process and scaphoid facet are more amenable to reduction through ligamentotaxis or by manipulation and reduction.
  • A new technique of combining external fixation with open reduction of the displaced lunate fossa through a small, longitudinal incision and elevation of the impacted fragment without direct visualization of the surface of the joint has been described.[rx]

Open Reduction and Internal Fixation

  • One of the recent advances in the treatment of radial and ulnar shaft fractures is the more frequent application of open reduction and internal fixation, especially for intra-articular fractures. There are two groups of fractures for which open reduction and internal fixation is advisable.

Arthroscopic-Assisted Fracture Reduction

  • Intra-articular fractures of the radius can be arthroscopically assessed, and reduction of the articular components and assessment and repair of ligamentous injury can then be undertaken.[rx,rx,rx] The ideal timing for arthroscopically assisted radial and ulnar shaft fractures surgery is 3 to 7 days after injury.

Rehabilitation Guideline for Non-Operative/Conservative rehabilitation [rx]

Acute Stage (0-8 weeks)

Goals

  • Protection with short-arm cast
  • Control pain and edema
  • Maintain range in digits, elbows, shoulder

Interventions

  • AROM and PROM of digits, elbow, shoulder
  • Elevation of hand and digits to control edema
  • Cast removal between 6-8 weeks

Sub Acute Stage

Goal

  • Control pain and edema (TENS, ice)
  • Increase ROM
  • Increase activities of daily living (ADLs)

Interventions

  • AROM and PROM of digits, elbow, shoulder
  • AROM wrist flexion/ extension, forearm supination/ pronation
  • PROM of low load and prolonged stretch

Settled Stage

Goals

  • Regain full ROM
  • Begin strengthening
  • Return to activity

Interventions

  • Continue all ROM exercises
  • Progress to the strengthening of all joints[rx]

Rehabilitation Guideline for External Fixation by Pho et al

Acute Stage (1-6 weeks)

Goals

  • Control pain and edema (TENS, ice)
  • Protect surgical site
  • Maintain ROM of digits, elbow, shoulder

Interventions

  • Elevation
  • AROM of digits, elbow, shoulder
  • AROM forearm supination/ pronation

Sub Acute (7-10 weeks)

Goal

  • Protect fracture site
  • Control pain and edema (TENS, ice)
  • ROM of involved and uninvolved joints

Interventions

  • AROM and PROM of wrist extension/ flexion, radial deviation, and supination/ pronation

Settled Stage (10-16 weeks)

Goal

  • Regain full ROM
  • Begin strengthening
  • Increase tolerance to ADLs

Interventions

  • ROM of wrist flexion/ extension, radial/ ulnar deviation, forearm supination/ pronation progressing to isometric exercises and resisted exercises using dumbbells or resistive bands
  • PROM of low load and prolonged stretching of wrist motions
  • Grip strengthening
  • ADL training within tolerance[rx]

Cryotherapy

  • Cryotherapy is an effective modality for controlling edema in the acute phase after trauma and during rehab due to its ability in helping to decrease blood flow through vasoconstriction limiting the amount of fluid escaping from capillaries to the interstitial fluid[rx]. Cryotherapy can also be combined with compression and elevation in the treatment of edema.[rx]
  • To control pain using cryotherapy, the modality should be applied to the area for 10-15 minutes which can result in pain control up to 2 hours post application.[rx]Precautions for the use of cryotherapy include: over a superficial branch of the nerve, over an open wound, poor sensation or mentation, and very young or very old patients.[rx] Contraindications for cryotherapy include; Acute febrile illness, Vasospasm e.g. Raynaud’s disease, Cryoglobulinemia, Cold urticaria.[rx]

Electrical Stimulation

  • The use of transcutaneous electrical nerve stimulation (TENS) may be used as an adjunct during any phase of rehab to address pain but can be particularly useful for patients that are increasing the level of activity of the wrist. Conventional (high-rate) TENS is useful for disrupting the pain cycle through a prolonged treatment session as great as 24 hours a day.[rx]
  • Low-rate TENS is another form of electrical stimulation that is successful in diminishing pain by targeting motor or nociceptive A-delta nerves. Low-rate TENS has been reported to be effective in pain control for up to 4-5 hours post-treatment.[rx]
  • The literature is still not conclusive on this topic and the results of one study may contradict or, on the contrary, reinforce the results of another study. Yet there is evidence supporting the beneficial effects of electrical stimulation, especially in combination with physiotherapy exercises.

Supervised Active rehabilitation program used in Study

ISOMETRIC EXERCISE

  • Wrist flexors and extensors

ACTIVE RANGE OF MOTION EXERCISE

  • Assisted stretch to forearm flexors and extensor musculature and radial/ulnar deviation
  • Weight-bearing wrist extension exercise(hand on the table with the patient leaning forward on them) to patient tolerance
  • Active stretch to shoulder girdle and rotator cuff musculature
  • Active stretch to elbow flexor and extensor musculature

INTRINSIC HAND MUSCLE EXERCISE

  • Thumb/digit opposition
  • Repetitive squeezing of therapy
  • repetitive towel wringing exercise

STRENGTHENING ROUTINE

  • Biceps curl with 1,5-2 pound weights bilaterally
  • Shoulder abduction, flexion and extension reps with 2-pound weights bilaterally
  • Repetitive squeezing of a rubber ball in affected wrist
  • Flexion and extension of wrist using 1,5-pound weights increasing as tolerated

FUNCTIONAL ACTIVITIES

  • The patient is encouraged to resume pre-accident activities that involve the affected extremity (eg. writing, typing, cooking, etc.)

Complications of Radial and Ulnar Shaft Fractures

There were no major complications such as neurovascular injury, infection, or impaired wound healing. Surgery-related complication at 2-year follow-up included nonunion in 3 patients (11%),

  • DRUJ subluxation in 3 patients (11%),
  • Implant migration in 4 patients (14%),
  • Radiographic resorption of the ulnar styloid in 4 patients (14%).
  • Radiographic nonunion was noted in 1 patient in group A (8%) and 2 in group B (13%). Residual DRUJ subluxation was noted in 3 patients; all were in group B (20%).
  • Partial or complete radiographic resorption of the ulna was found in 1 patient in group A (8%) and 3 in group B (20%).
  • Implant migration was noted in 1 patient in group A (8%), and 2 in group B (13%).
  • Subsequent removal surgery due to implant irritation occurred in 13 patients (46%), with 4 in group A (31%) and 8 in group B (53%).
  • A total of 11 patients (39%) with surgery-related complications included 5 (38%) in group A and 12 (80%) in group B, with a significant difference

There are risks associated with any type of surgery. These include

  • Nonunion (1-5%)
  • Infection (~4.8%)
  • 4% in the surgical group develop adhesive capsulitis requiring surgical intervention
  • Bleeding
  • Problems with wound healing
  • Blood clots
  • Damage to blood vessels or nerves
  • Reaction to anesthesia
  • Hardware prominence
  • Malunion with cosmetic deformity
  • Restriction of ROM
  • The difficulty with bone healing
  • Hardware irritation
  • Fracture comminution (Z deformity)
  • Fracture displacement
  • Increased fatigue with overhead activities
  • Dissatisfaction with appearance
  • The difficulty with shoulder straps, backpacks and the like
  • ~30% of patient request plate removal
  • Superior plates associated with increased irritation
  • Superior plates associated with increased risk of subclavian artery or vein penetration

References

Radial and ulnar shaft fractures

By

Radius Lower End Fractures; Causes, Diagnosis, Treatment

Radius Lower End Fractures/Distal radius fractures are one of the most common injuries encountered in orthopedic practice. They make up 8%−15% of all bony injuries in adults.[] Abraham Colles is credited with a description of the most common fracture pattern affecting distal end radius in 1814 and is classically named after him.[] Colles’ fracture specifically is defined as a metaphyseal injury of the cortico-cancellous junction (within 2−3 cm of articular surface) of the distal radius with characteristic dorsal tilt, dorsal shift, radial tilt, radial shift, supination, and impaction. Smith’s fractures, also referred to as reverse Colles’ fracture, have a palmar tilt of the distal fragment. Barton’s fracture is the displaced intra-articular coronal plane fracture-subluxation of dorsal lip of the distal radius with displacement of carpus with the fragment

Mechanism of Distal Radius Fractures

Most of the fractures are caused by a fall on the outstretched hand with the wrist in dorsiflexion. The form and severity of fracture of distal radius as well as the concomitant injury of disco-ligamentary structures of the wrist also depend on the position of the wrist at the moment of hitting the ground. The width of this angle influences the localization of the fracture. Pronation, supination, and abduction determine the direction of the force and the compression of the carpus and different appearances of ligament injuries.[]

The radius initially fails in tension on the volar aspect, with the fracture progressing dorsally where bending forces induce compressive stresses, resulting in dorsal comminution. Cancellous impaction of the metaphysis further compromises dorsal stability. Additional shearing forces influence the injury pattern, resulting in articular surface involvement.[]

Types of Distal Radius Fractures

Melone classification

The system that comes closest to directing treatment has been devised by Melone. This system breaks distal radius fractures down into 4 components: radial styloid, dorsal medial fragment, volar medial fragment, and radial shaft. The two medial fragments (which together create the lunate fossa) are grouped together as the medial complex.[rx]

Type Description Note
I No displacement of a medial complex

  • No comminution.
Fracture is stable after closed reduction
II Unstable depression fracture of lunate fossa (“die-punch”)

  • Moderate/severe medial complex displacement.
  • Comminution of dorsal and volar cortices.
  • IIA – Irreducible, closed fracture.
  • IIB – Irreducible, closed due to impaction
III Type II fracture plus a ‘spike’ of the radius volarly May impinge on the median nerve
IV Split fracture

  • Severe comminution
  • Rotation of fragments.
Unstable
V Explosion injuries

  • Severe displacement/comminution
Often associated with diaphyseal comminution

Frykman Classification

Though the Frykman classification system has traditionally been used, there is little value in its use because it does not help direct treatment. This system focuses on articular and ulnar involvement. The classification is as follows:[rx]

Radius Fracture Ulna Fracture
Absent Present
Extra-articular I II
Intra-articular involving radiocarpal joint III IV
Intra-articular involving DRUJ (distal radio-ulnar joint) V VI
Intra-articular involving both radiocarpal & DRUJ VII VIII

Universal Classification

The Universal classification system is descriptive but also does not direct treatment. Universal codes are:[rx]

Type Location Displacement Sub-type
I Extra-articular Undisplaced
II Extra-articular Displaced A: Reducible, stableB: Reducible, unstable

C: Irreducible

III Intra-articular Undisplaced
IV Intra-articular Displaced A: Reducible, stableB: Reducible, unstable

C: Irreducible

D: Complex

AO/OTA Classification

A widely used system that includes 27 subgroups. Three main groups based on fracture joint involvement (A – extra-articular, B – partial articular, C – complete articular). Classification further defined based on the level of comminution and direction of displacement. A qualification (Q) modifier can be added to classify associated ulnar injury.[rx]

Fernandez classification

The simplified system developed in response to AO classification, intended to be based off injury mechanism with more treatment-oriented classifications (treatment suggestions not meant to be used as rigid guidelines but can be used to help decision making on a case-by-case basis)[rx]

Type Description Stability Number of Fragments Associated Lesions (see below) Recommended Treatment
I Bending fracture – metaphysis Stable or unstable 2 main fragments with variable metaphyseal comminution Uncommon Stable -> conservativeUnstable -> percutaneous pinning or external fixation
II Shearing fracture – articular surface Unstable 2, 3, comminuted Less uncommon Open reduction with screw-plate fixation
III Compression fracture – articular surface Stable or unstable 2, 3, 4, comminuted Common
  • Closed
  • Limited arthroscopic release
  • Extensile open reduction
  • Percutaneous pins plus external and internal fixation
  • Bone Graft
IV Avulsion fracture, radiocarpal fracture, dislocation Unstable 2 (radial/ulnar styloid), 3, comminuted Frequent(especially ligamentous injury) Closed or open reduction with pin/screw fixation or tension wiring
V Combined fracture (high-energy injury) – Often intra-articular and open Unstable Comminuted Always present Combined treatment

Note: Associated Lesions include carpal ligament injury, nerve injury, tendon damage, and compartment syndrome

Causes of Distal Radius Fractures

Colles’ fracture

  • Sudden forceful  fall down
  • Road traffic accident
  • Falls – Falling onto an outstretched hand is one of the most common causes of a broken distal radius.
  • Sports injuries – Many distal radius fractures occur during contact sports or sports in which you might fall onto an outstretched hand — such as in-line skating or snowboarding.
  • Motor vehicle crashes – Motor vehicle crashes can cause wrist bones to break, sometimes into many pieces, and often require surgical repair.
  • Have osteoporosis –  a disease that weakens your bones
  • Eave low muscle mass or poor muscle strength – or lack agility and have poor balance (these conditions make you more likely to fall)
  • Walk or do other activities in snow or on the ice – or do activities that require a lot of forwarding momenta, such as in-line skating and skiing
  • Wave an inadequate intake of calcium or vitamin D
  • Football or soccer, especially on artificial turf
  • Rugby
  • Horseback riding
  • Hockey
  • Skiing
  • Snowboarding
  • In-line skating
  • Jumping on a trampoline

Symptoms of Distal Radius Fractures

Common symptoms of a distal radius fractures include:

  • Severe pain that might worsen when gripping or squeezing or moving your hand or wrist
  • Swelling
  • Tenderness
  • Bruising
  • Obvious deformity, such as a bent wrist
  • Pain
  • Bruising
  • Tenderness
  • The wrist hanging in a deformed way
  • Pain, especially when flexing the wrist
  • Deformity of the wrist, causing it to look crooked and bent.
  • Your wrist is in great pain.
  • Your wrist, arm, or hand is numb.
  • Your fingers are pale.

Diagnosis of Distal Radius Fractures

Diagnosis can be made upon the interpretation of anteroposterior and lateral views alone.[rx]

The classic distal radius fractures have the following characteristics:[rx]

  • Transverse fracture of the radius
  • 2.5 cm (0.98 inches) proximal to the radio-carpal joint
  • dorsal displacement and dorsal angulation, together with radial tilt[rx]

Other characteristics[rx][rx]

  • Radial shortening
  • Loss of ulnar inclination≤
  • Radial angulation of the wrist
  • Comminution at the fracture site
  • Associated fracture of the ulnar styloid process in more than 60% of cases.

Differential Diagnosis/ Associated Injuries

  • Scapholunate ligament tear
  • Median nerve injury
  • TFCC (triangular fibrocartilage complex) injury, up to 50% when ulnar styloid fx also present
  • Carpal ligament injury – Scapholunate Instability(most common), lunotriquetral ligament
  • Tendon injury, attritional EPL rupture, usually treated with EIP tendon transfer
  • Compartment syndrome
  • Ulnar styloid fracture
  • DRUJ (Distal Radial Ulnar Joint) Instability
  • Galeazzi Fracture: highly associated with distal 1/3 radial shaft fractures[rx]
X-ray of a displaced intra-articular distal radius fracture in an external fixator – The articular surface is widely displaced and irregular. Diagnosis may be evident clinically when the distal radius is deformed but should be confirmed by X-ray. The differential diagnosis includes scaphoid fractures and wrist dislocations, which can also co-exist with a distal radius fracture. Occasionally, fractures may not be seen on X-rays immediately after the injury. Delayed X-rays, X-ray computed tomography (CT scan), or Magnetic resonance imaging[rx] (MRI) can confirm the diagnosis.

Medical imaging

  • Fracture with a dorsal tilt – Dorsal is left, and volar is right in the image.
  • X-ray of the affected wrist is required if a fracture is suspected. Posteroanterior, lateral, and oblique views can be used together to describe the fracture.[rx] X-ray of the uninjured wrist should also be taken to determine if any normal anatomic variations exist before surgery.[rx]
  • A CT scan is often performed to further investigate the articular anatomy of the fracture, especially for fracture and displacement within the distal radio-ulnar joint.[rx]

Various kinds of information can be obtained from X-rays of the wrist:[rx]

Lateral view

  • Carpal malalignment – A line is drawn along the long axis of the capitate bone and another line is drawn along the long axis of the radius. If the carpal bones are aligned, both lines will intersect within the carpal bones. If the carpal bones are not aligned, both lines will intersect outside the carpal bones. Carpal malignment is frequently associated with a dorsal or volar tilt of the radius and will have poor grip strength and poor forearm rotation.[rx]
  • Teardrop angle – It is the angle between the line that passes through the central axis of the volar rim of the lunate facet of the radius and the line that pass through the long axis of the radius. Teardrop angle less than 45 degrees indicates the displacement of the lunate facet.[rx]
  • Anteroposterior distance (AP distance) – Seen on lateral X-ray, it is the distance between the dorsal and volar rim of the lunate facet of the radius. The usual distance is 19 mm.[rx] Increased AP distance indicates the lunate facet fracture.[rx]
  • Volar or dorsal tilt – A line is drawn joining the most distal ends of the volar and dorsal side of the radius. Another line perpendicular to the longitudinal axis of the radius is drawn. The angle between the two lines is the angle of volar or dorsal tilt of the wrist. Measurement of volar or dorsal tilt should be made in true lateral view of the wrist because pronation of the forearm reduces the volar tilt and supination increases it. When the dorsal tilt is more than 11 degrees, it is associated with loss of grip strength and loss of wrist flexion.[rx]

Posteroanterior view

  • Radial inclination – It is the angle between a line drawn from the radial styloid to the medial end of the articular surface of the radius and a line drawn perpendicular to the long axis of the radius. Loss of radial inclination is associated with loss of grip strength.[rx]
  • Radial length – It is the vertical distance in millimeters between a line tangential to the articular surface of the ulna and a tangential line drawn at the most distal point of radius (radial styloid). Shortening of radial length more than 4mm is associated with wrist pain.[rx]
  • Ulnar variance – It is the vertical distance between a horizontal line parallel to the articular surface of the radius and another horizontal line drawn parallel to the articular surface of the ulnar head. Positive ulnar variance (ulna appears longer than radius) disturbs the integrity of triangular fibrocartilage complex and is associated with loss of grip strength and wrist pain.[rx]

Oblique view

  • Pronated oblique view of the distal radius helps to show the degree of comminution of the distal end radius, depression of the radial styloid and confirming the position the screws at the radial side of the distal end radius. Meanwhile, a supinated oblique view of shows the ulnar side of the distal radius, accessing the depression of dorsal rim of the lunate facet, and the position of the screws on the ulnar side of the distal end radius.[rx]

Plain radiographs

  • Radiographic imaging is important in diagnosis, classification, treatment and follow-up assessment of these fractures. The routine minimal evaluation for distal radius fractures must include two views-a postero-anterior (PA) view and lateral view.[]
  • The PA view should be obtained with the humerus abducted 90 degrees from the chest wall, so that the elbow is at the same level as the shoulder and flexed 90 degrees.[] The palm is maintained flat against the cassette

Computed Tomography

  • CT may be useful and can give significant information in comparison with that obtained with conventional radiography in the evaluation of complex or occult fractures, distal radial articular surface, distal radio-ulnar joint, ventromedial fracture fragment (as described by Melone),[] assessments of fracture healing as well as post-surgical evaluation.[]
  • CT may be indicated for the confirmation of occult fractures suspected on the basis of physical examination when plain films are normal.

Magnetic Resonance Imaging

  • Although this modality is not the first choice in evaluating acute distal radius fractures, it is a powerful diagnostic tool to assess bony, ligamentous and soft tissue abnormalities associated with these fractures.
  • MRI has proved to be a very important diagnostic tool for delineating perforation of triangular fibrocartilage complex (TFCC),[] perforation of interosseous ligaments of the proximal carpal row, evaluating occult fractures, post-traumatic or avascular necrosis of carpal bones.

Treatment of Distal Radius Fractures

Non-Surgical

Treatment available can be broadly

  • Get medical help immediately – If you fall on an outstretched arm, get into a car accident or are hit while playing a sport and feel intense pain in your shoulder area, then get medical care immediately. Distal radius fractures cause significant pain in the front part of your shoulder, closer to the base of your neck. You’ll innately know that something is seriously wrong because you won’t be able to lift your arm up. Other symptoms include immediate swelling and/or bruising near the fracture, grinding sounds with arm movements and potential numbness and tingling in the arm/hand.
  • Apply ice to your fractured clavicle – After you get home from the hospital distal radius fractures (regardless if you had surgery or not), you should apply a bag of crushed ice (or something cold) to your injured in order to reduce the swelling and numb the pain. Ice therapy is effective for acute (recent) injuries that involve swelling because it reduces blood flow by constricting local blood vessels. Apply the crushed ice to your clavicle for 15 minutes three to five times daily until the soreness and inflammation eventually fades away
    Lightly exercise after the pain fades – After a couple of weeks when the swelling has subsided and the pain has faded away, remove your arm sling for short periods and carefully move your arm and shoulder in all different directions. Don’t aggravate the distal radius fractures so that it hurts, but gently reintroduce movements to the involved joints and muscles. Start cautiously, maybe starting with light calisthenics and then progress to holding light weights (five-pound weights to start). Your distal radius fractures need to move a little bit during the later phases of the injury to stimulate complete recovery.
  • Practice stretching and strengthening exercises – of the fingers, elbow, and shoulder if your doctor recommends them.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for six to eight weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)
  • Get a supportive arm sling – Due to their anatomical position, distal radius fractures can’t be cast like a broken limb can. Instead, a supportive arm sling or “figure-eight” splint is typically used for support and comfort, either immediately after the injury if it’s just a hairline fracture or following surgery, if it’s a complicated fracture. A figure-eight splint wraps around both shoulders and the base of your neck in order to support the injured shoulder and keep it positioned up and back. Sometimes a larger swath of material is wrapped around the sling to keep it closer to your body. You’ll need to wear the sling constantly until there is no pain with arm movements, which takes between two to four weeks for children or four to eight weeks for adults.
  • Get a referral to physical therapy – Once you’ve recovered and able to remove your arm sling splint for good, you’ll likely notice that the muscles surrounding your shoulder and upper chest look smaller and feel weaker. That’s because muscle tissue atrophies without movement. If this occurs, then you’ll need to get a referral for some physical rehabilitation. Rehab can start once you are cleared by your orthopedist, are pain-free, and can perform all the basic arm and shoulder movements. A physiotherapist or athletic trainer can show you specific rehabilitation exercises and stretches to restore your muscle strength, joint movements, and flexibility
  • Rigid fixation – osteosynthesis with locking plate, hook plate fixation, fixation with a distal radius locking plate, coracoclavicular screws, Knowles pin fixation.
  • Flexible fixation – simple k wire fixation, tension band wiring, suture anchors, vicryl tape, dacron arterial graft for coracoclavicular ligament reconstruction.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for six to eight weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)

Rest your Hand

Once you’re discharged from the hospital in an arm sling, your top priority is to rest your shoulder and not further inflame the injury. Of course, the arm sling not only provides support, but it also restricts movement, which is why you should keep it on even during sleep. Avoiding the temptation to move your shoulder and arm will help the bone mend quicker and the pain fades away sooner.
  • Depending on what you do for a living and if the injury is to your dominant side, you may need to take a couple of weeks off work to recuperate.
  • Healing takes between four to six weeks in younger people and up to 12 weeks in the elderly, but it depends on the severity of the fractured clavicle.
  • Athletes in good health are typically able to resume their sporting activities within two months of breaking they’re ulnar styloid depending on the severity of the break and the specific sport.
  • Sleeping on your back (with the sling on) is necessary to keep the pressure off your shoulder and prevent stressing the clavicle injury.

Eat nutritiously during your recovery

All bones and tissues in the body need certain nutrients in order to heal properly and in a timely manner. Eating a nutritious and balanced diet that includes lots of minerals and vitamins is proven to help heal broken bones of all types, including ulnar styloid. Therefore, focus on eating lots of fresh produce (fruits and veggies), whole grains, lean meats, and fish to give your body the building blocks needed to properly repair your clavicle. In addition, drink plenty of purified water, milk, and other dairy-based beverages to augment what you eat.

  • Broken bones need ample minerals (calcium, phosphorus, magnesium, boron) and protein to become strong and healthy again.
  • Excellent sources of minerals/protein include dairy products, tofu, beans, broccoli, nuts and seeds, sardines and salmon.
  • Important vitamins that are needed for bone healing include vitamin C (needed to make collagen), vitamin D (crucial for mineral absorption), and vitamin K (binds calcium to bones and triggers collagen formation).
  • Conversely, don’t consume food or drink that is known to impair bone/tissue healing, such as alcoholic beverages, sodas, most fast food items and foods made with lots of refined sugars and preservatives.

Physical therapy

  • Although there will be some pain, it is important to maintain arm motion to prevent stiffness. Often, patients will begin doing exercises for elbow motion immediately after the injury.  After a proximal ulna fracture, it is common to lose some shoulder and arm strength. Once the bone begins to heal, your pain will decrease and your doctor may start gentle shoulder exercises. These exercises will help prevent stiffness and weakness. More strenuous exercises will be started gradually once the fracture is completely healed.

Follow-up care

  • You will need to see your doctor regularly until your fracture heals. During these visits, he or will take x-rays to make sure the bone is healing in a good position. After the bone has healed, you will be able to gradually return to your normal activities.

Breathing Exercise

  • To elevate breathing problem or remove the lung congestion if needed.

Medication

Closed Reduction and Casting

  • All fractures characterized by minor comminution, without or with minimal displacements can be considered for closed reduction and cast immobilization. Mainly type I and type IIA Melone’s fracture can be managed conservatively. The fracture should be kept under closed observation to look for any re-displacement.
  • Despite the widespread acceptance of immobilization in a plaster cast, questions remain regarding the optimum position, the duration of immobilization and the need to extend the cast proximal to the elbow. No clear consensus exists as to the best position for immobilizing the wrist in plaster. Sarmiento et al.[] advocated immobilization in a position of supination to decrease the deforming force of the brachioradialis, which may cause loss of reduction.

Pins and Plaster Technique

  • Placement of pins in the metacarpals and forearm was initially advocated by Bohler in 1923, but it gained popularity after the report by Green, who showed good or excellent results in 86% of his patients.[]
  • However, he noted a high incidence of minor or major complications, one-third of which were related to pin site only. Other researchers also noted that one-third of the complications were related to pins and 16% of the patients needed reoperation for complications.[]

Percutaneous Pinning

  • Extra-articular fractures of the distal end of the radius with extensive comminution or the fractures that have no more than two articular fragments, in which anatomical reduction is obtainable, are amenable to percutaneous pinning of the fracture fragments and application of a plaster cast. A single pin placed through the radial styloid as a means of stabilizing the displaced fracture fragment was first suggested by Lambotte in 1908.[,]

External Fixation

  • External fixation is generally accepted as superior to plaster immobilization in the young patients with an intra-articular comminuted fracture of the distal radius. Other indications for external fixation include some unstable extra-articular fractures with significant comminution and failure to maintain reduction after an initial attempt at closed management in a cast, certain situations of multiple trauma, the presence of dysfunctional contralateral limb, severe open fractures with significant soft tissue injury and neurovascular compromise, and bilateral injuries.[]

Limited Open Reduction

  • In intra-articular fractures that have more than 2 mm of displacement, the radio-carpal joint may be incongruent despite adequate attempts at reduction. The incongruency usually involves the lunate part of the distal end of the radius.
  • The radial styloid process and scaphoid facet are more amenable to reduction through ligamentotaxis or by manipulation and reduction.
  • A new technique of combining external fixation with open reduction of the displaced lunate fossa through a small, longitudinal incision and elevation of the impacted fragment without direct visualization of the surface of the joint has been described.[]

Open Reduction and Internal Fixation

  • One of the recent advances in the treatment of distal radius fractures is the more frequent application of open reduction and internal fixation, especially for intra-articular fractures. There are two groups of fractures for which open reduction and internal fixation is advisable.

Arthroscopic-Assisted Fracture Reduction

  • Intra-articular fractures of the radius can be arthroscopically assessed, and reduction of the articular components and assessment and repair of ligamentous injury can then be undertaken.[,,] The ideal timing for arthroscopically assisted distal radius surgery is 3 to 7 days after injury.

Rehabilitation Guideline for Non-Operative/Conservative rehabilitation [rx]

Acute Stage (0-8 weeks)

Goals

  • Protection with short-arm cast
  • Control pain and edema
  • Maintain range in digits, elbows, shoulder

Interventions

  • AROM and PROM of digits, elbow, shoulder
  • Elevation of hand and digits to control edema
  • Cast removal between 6-8 weeks

Sub Acute Stage

Goal

  • Control pain and edema (TENS, ice)
  • Increase ROM
  • Increase activities of daily living (ADLs)

Interventions

  • AROM and PROM of digits, elbow, shoulder
  • AROM wrist flexion/ extension, forearm supination/ pronation
  • PROM of low load and prolonged stretch

Settled Stage

Goals

  • Regain full ROM
  • Begin strengthening
  • Return to activity

Interventions

  • Continue all ROM exercises
  • Progress to the strengthening of all joints[rx]

Rehabilitation Guideline for External Fixation by Pho et al

Acute Stage (1-6 weeks)

Goals

  • Control pain and edema (TENS, ice)
  • Protect surgical site
  • Maintain ROM of digits, elbow, shoulder

Interventions

  • Elevation
  • AROM of digits, elbow, shoulder
  • AROM forearm supination/ pronation

Sub Acute (7-10 weeks)

Goal

  • Protect fracture site
  • Control pain and edema (TENS, ice)
  • ROM of involved and uninvolved joints

Interventions

  • AROM and PROM of wrist extension/ flexion, radial deviation, and supination/ pronation

Settled Stage (10-16 weeks)

Goal

  • Regain full ROM
  • Begin strengthening
  • Increase tolerance to ADLs

Interventions

  • ROM of wrist flexion/ extension, radial/ ulnar deviation, forearm supination/ pronation progressing to isometric exercises and resisted exercises using dumbbells or resistive bands
  • PROM of low load and prolonged stretching of wrist motions
  • Grip strengthening
  • ADL training within tolerance[rx]

Cryotherapy

  • Cryotherapy is an effective modality for controlling edema in the acute phase after trauma and during rehab due to its ability in helping to decrease blood flow through vasoconstriction limiting the amount of fluid escaping from capillaries to the interstitial fluid[rx]. Cryotherapy can also be combined with compression and elevation in the treatment of edema.[rx]
  • To control pain using cryotherapy, the modality should be applied to the area for 10-15 minutes which can result in pain control up to 2 hours post application.[rx]Precautions for the use of cryotherapy include: over a superficial branch of the nerve, over an open wound, poor sensation or mentation, and very young or very old patients.[rx] Contraindications for cryotherapy include; Acute febrile illness, Vasospasm e.g. Raynaud’s disease, Cryoglobulinemia, Cold urticaria.[rx]

Electrical Stimulation

  • The use of transcutaneous electrical nerve stimulation (TENS) may be used as an adjunct during any phase of rehab to address pain but can be particularly useful for patients that are increasing the level of activity of the wrist. Conventional (high-rate) TENS is useful for disrupting the pain cycle through a prolonged treatment session as great as 24 hours a day.[rx]
  • Low-rate TENS is another form of electrical stimulation that is successful in diminishing pain by targeting motor or nociceptive A-delta nerves. Low-rate TENS has been reported to be effective in pain control for up to 4-5 hours post-treatment.[rx]
  • The literature is still not conclusive on this topic and the results of one study may contradict or, on the contrary, reinforce the results of another study. Yet there is evidence supporting the beneficial effects of electrical stimulation, especially in combination with physiotherapy exercises.

Supervised Active rehabilitation program used in Study

ISOMETRIC EXERCISE

  • Wrist flexors and extensors

ACTIVE RANGE OF MOTION EXERCISE

  • Assisted stretch to forearm flexors and extensor musculature and radial/ulnar deviation
  • Weight-bearing wrist extension exercise(hand on the table with the patient leaning forward on them) to patient tolerance
  • Active stretch to shoulder girdle and rotator cuff musculature
  • Active stretch to elbow flexor and extensor musculature

INTRINSIC HAND MUSCLE EXERCISE

  • Thumb/digit opposition
  • Repetitive squeezing of therapy
  • repetitive towel wringing exercise

STRENGTHENING ROUTINE

  • Biceps curl with 1,5-2 pound weights bilaterally
  • Shoulder abduction, flexion and extension reps with 2-pound weights bilaterally
  • Repetitive squeezing of a rubber ball in affected wrist
  • Flexion and extension of wrist using 1,5-pound weights increasing as tolerated

FUNCTIONAL ACTIVITIES

  • The patient is encouraged to resume pre-accident activities that involve the affected extremity (eg. writing, typing, cooking, etc.)

Complications of Distal Radius Fractures

There were no major complications such as neurovascular injury, infection, or impaired wound healing. Surgery-related complication at 2-year follow-up included nonunion in 3 patients (11%),

  • DRUJ subluxation in 3 patients (11%),
  • Implant migration in 4 patients (14%),
  • Radiographic resorption of the ulnar styloid in 4 patients (14%).
  • Radiographic nonunion was noted in 1 patient in group A (8%) and 2 in group B (13%). Residual DRUJ subluxation was noted in 3 patients; all were in group B (20%).
  • Partial or complete radiographic resorption of the ulna was found in 1 patient in group A (8%) and 3 in group B (20%).
  • Implant migration was noted in 1 patient in group A (8%), and 2 in group B (13%).
  • Subsequent removal surgery due to implant irritation occurred in 13 patients (46%), with 4 in group A (31%) and 8 in group B (53%).
  • A total of 11 patients (39%) with surgery-related complications included 5 (38%) in group A and 12 (80%) in group B, with a significant difference

There are risks associated with any type of surgery. These include

  • Nonunion (1-5%)
  • Infection (~4.8%)
  • 4% in the surgical group develop adhesive capsulitis requiring surgical intervention
  • Bleeding
  • Problems with wound healing
  • Blood clots
  • Damage to blood vessels or nerves
  • Reaction to anesthesia
  • Hardware prominence
  • Malunion with cosmetic deformity
  • Restriction of ROM
  • The difficulty with bone healing
  • Hardware irritation
  • Fracture comminution (Z deformity)
  • Fracture displacement
  • Increased fatigue with overhead activities
  • Dissatisfaction with appearance
  • The difficulty with shoulder straps, backpacks and the like
  • ~30% of patient request plate removal
  • Superior plates associated with increased irritation
  • Superior plates associated with increased risk of subclavian artery or vein penetration

References

Radius Lower End Fractures

ByRx Harun

Distal Radius Fractures – Causes, Diagnosis, Treatment

Distal radius fractures are one of the most common injuries encountered in orthopedic practice. They make up 8%−15% of all bony injuries in adults.[] Abraham Colles is credited with description of the most common fracture pattern affecting distal end radius in 1814, and is classically named after him.[] Colles’ fracture specifically is defined as metaphyseal injury of cortico-cancellous junction (within 2−3 cm of articular surface) of the distal radius with characteristic dorsal tilt, dorsal shift, radial tilt, radial shift, supination and impaction. Smith’s fractures, also referred to as reverse Colles’ fracture, have palmar tilt of the distal fragment. Barton’s fracture is the displaced intra-articular coronal plane fracture-subluxation of dorsal lip of the distal radius with displacement of carpus with the fragment

Mechanism of Distal Radius Fractures

Most of the fractures are caused by a fall on the outstretched hand with the wrist in dorsiflexion. The form and severity of fracture of distal radius as well as the concomitant injury of disco-ligamentary structures of the wrist also depend on the position of the wrist at the moment of hitting the ground. The width of this angle influences the localization of the fracture. Pronation, supination, and abduction determine the direction of the force and the compression of the carpus and different appearances of ligament injuries.[]

The radius initially fails in tension on the volar aspect, with the fracture progressing dorsally where bending forces induce compressive stresses, resulting in dorsal comminution. Cancellous impaction of the metaphysis further compromises dorsal stability. Additional shearing forces influence the injury pattern, resulting in articular surface involvement.[]

Types of Distal Radius Fractures

Melone classification

The system that comes closest to directing treatment has been devised by Melone. This system breaks distal radius fractures down into 4 components: radial styloid, dorsal medial fragment, volar medial fragment, and radial shaft. The two medial fragments (which together create the lunate fossa) are grouped together as the medial complex.[rx]

Type Description Note
I No displacement of a medial complex

  • No comminution.
Fracture is stable after closed reduction
II Unstable depression fracture of lunate fossa (“die-punch”)

  • Moderate/severe medial complex displacement.
  • Comminution of dorsal and volar cortices.
  • IIA – Irreducible, closed fracture.
  • IIB – Irreducible, closed due to impaction
III Type II fracture plus a ‘spike’ of the radius volarly May impinge on the median nerve
IV Split fracture

  • Severe comminution
  • Rotation of fragments.
Unstable
V Explosion injuries

  • Severe displacement/comminution
Often associated with diaphyseal comminution

Frykman Classification

Though the Frykman classification system has traditionally been used, there is little value in its use because it does not help direct treatment. This system focuses on articular and ulnar involvement. The classification is as follows:[rx]

Radius Fracture Ulna Fracture
Absent Present
Extra-articular I II
Intra-articular involving radiocarpal joint III IV
Intra-articular involving DRUJ (distal radio-ulnar joint) V VI
Intra-articular involving both radiocarpal & DRUJ VII VIII

Universal Classification

The Universal classification system is descriptive but also does not direct treatment. Universal codes are:[rx]

Type Location Displacement Sub-type
I Extra-articular Undisplaced
II Extra-articular Displaced A: Reducible, stableB: Reducible, unstable

C: Irreducible

III Intra-articular Undisplaced
IV Intra-articular Displaced A: Reducible, stableB: Reducible, unstable

C: Irreducible

D: Complex

AO/OTA Classification

A widely used system that includes 27 subgroups. Three main groups based on fracture joint involvement (A – extra-articular, B – partial articular, C – complete articular). Classification further defined based on the level of comminution and direction of displacement. A qualification (Q) modifier can be added to classify associated ulnar injury.[rx]

Fernandez classification

The simplified system developed in response to AO classification, intended to be based off injury mechanism with more treatment-oriented classifications (treatment suggestions not meant to be used as rigid guidelines but can be used to help decision making on a case-by-case basis)[rx]

Type Description Stability Number of Fragments Associated Lesions (see below) Recommended Treatment
I Bending fracture – metaphysis Stable or unstable 2 main fragments with variable metaphyseal comminution Uncommon Stable -> conservativeUnstable -> percutaneous pinning or external fixation
II Shearing fracture – articular surface Unstable 2, 3, comminuted Less uncommon Open reduction with screw-plate fixation
III Compression fracture – articular surface Stable or unstable 2, 3, 4, comminuted Common
  • Closed
  • Limited arthroscopic release
  • Extensile open reduction
  • Percutaneous pins plus external and internal fixation
  • Bone Graft
IV Avulsion fracture, radiocarpal fracture, dislocation Unstable 2 (radial/ulnar styloid), 3, comminuted Frequent(especially ligamentous injury) Closed or open reduction with pin/screw fixation or tension wiring
V Combined fracture (high-energy injury) – Often intra-articular and open Unstable Comminuted Always present Combined treatment

Note: Associated Lesions include carpal ligament injury, nerve injury, tendon damage, and compartment syndrome

Causes of Distal Radius Fractures

Colles’ fracture

  • Sudden forceful  fall down
  • Road traffic accident
  • Falls – Falling onto an outstretched hand is one of the most common causes of a broken distal radius.
  • Sports injuries – Many distal radius fractures occur during contact sports or sports in which you might fall onto an outstretched hand — such as in-line skating or snowboarding.
  • Motor vehicle crashes – Motor vehicle crashes can cause wrist bones to break, sometimes into many pieces, and often require surgical repair.
  • Have osteoporosis –  a disease that weakens your bones
  • Eave low muscle mass or poor muscle strength – or lack agility and have poor balance (these conditions make you more likely to fall)
  • Walk or do other activities in snow or on the ice – or do activities that require a lot of forwarding momenta, such as in-line skating and skiing
  • Wave an inadequate intake of calcium or vitamin D
  • Football or soccer, especially on artificial turf
  • Rugby
  • Horseback riding
  • Hockey
  • Skiing
  • Snowboarding
  • In-line skating
  • Jumping on a trampoline

Symptoms of Distal Radius Fractures

Common symptoms of a distal radius fractures include:

  • Severe pain that might worsen when gripping or squeezing or moving your hand or wrist
  • Swelling
  • Tenderness
  • Bruising
  • Obvious deformity, such as a bent wrist
  • Pain
  • Bruising
  • Tenderness
  • The wrist hanging in a deformed way
  • Pain, especially when flexing the wrist
  • Deformity of the wrist, causing it to look crooked and bent.
  • Your wrist is in great pain.
  • Your wrist, arm, or hand is numb.
  • Your fingers are pale.

Diagnosis of Distal Radius Fractures

Diagnosis can be made upon the interpretation of anteroposterior and lateral views alone.[rx]

The classic distal radius fractures have the following characteristics:[rx]

  • Transverse fracture of the radius
  • 2.5 cm (0.98 inches) proximal to the radio-carpal joint
  • dorsal displacement and dorsal angulation, together with radial tilt[rx]

Other characteristics[rx][rx]

  • Radial shortening
  • Loss of ulnar inclination≤
  • Radial angulation of the wrist
  • Comminution at the fracture site
  • Associated fracture of the ulnar styloid process in more than 60% of cases.

Differential Diagnosis/ Associated Injuries

  • Scapholunate ligament tear
  • Median nerve injury
  • TFCC (triangular fibrocartilage complex) injury, up to 50% when ulnar styloid fx also present
  • Carpal ligament injury – Scapholunate Instability(most common), lunotriquetral ligament
  • Tendon injury, attritional EPL rupture, usually treated with EIP tendon transfer
  • Compartment syndrome
  • Ulnar styloid fracture
  • DRUJ (Distal Radial Ulnar Joint) Instability
  • Galeazzi Fracture: highly associated with distal 1/3 radial shaft fractures[rx]
X-ray of a displaced intra-articular distal radius fracture in an external fixator – The articular surface is widely displaced and irregular. Diagnosis may be evident clinically when the distal radius is deformed but should be confirmed by X-ray. The differential diagnosis includes scaphoid fractures and wrist dislocations, which can also co-exist with a distal radius fracture. Occasionally, fractures may not be seen on X-rays immediately after the injury. Delayed X-rays, X-ray computed tomography (CT scan), or Magnetic resonance imaging[rx] (MRI) can confirm the diagnosis.

Medical imaging

  • Fracture with a dorsal tilt – Dorsal is left, and volar is right in the image.
  • X-ray of the affected wrist is required if a fracture is suspected. Posteroanterior, lateral, and oblique views can be used together to describe the fracture.[rx] X-ray of the uninjured wrist should also be taken to determine if any normal anatomic variations exist before surgery.[rx]
  • A CT scan is often performed to further investigate the articular anatomy of the fracture, especially for fracture and displacement within the distal radio-ulnar joint.[rx]

Various kinds of information can be obtained from X-rays of the wrist:[rx]

Lateral view

  • Carpal malalignment – A line is drawn along the long axis of the capitate bone and another line is drawn along the long axis of the radius. If the carpal bones are aligned, both lines will intersect within the carpal bones. If the carpal bones are not aligned, both lines will intersect outside the carpal bones. Carpal malignment is frequently associated with a dorsal or volar tilt of the radius and will have poor grip strength and poor forearm rotation.[rx]
  • Teardrop angle – It is the angle between the line that passes through the central axis of the volar rim of the lunate facet of the radius and the line that pass through the long axis of the radius. Teardrop angle less than 45 degrees indicates the displacement of the lunate facet.[rx]
  • Anteroposterior distance (AP distance) – Seen on lateral X-ray, it is the distance between the dorsal and volar rim of the lunate facet of the radius. The usual distance is 19 mm.[rx] Increased AP distance indicates the lunate facet fracture.[rx]
  • Volar or dorsal tilt – A line is drawn joining the most distal ends of the volar and dorsal side of the radius. Another line perpendicular to the longitudinal axis of the radius is drawn. The angle between the two lines is the angle of volar or dorsal tilt of the wrist. Measurement of volar or dorsal tilt should be made in true lateral view of the wrist because pronation of the forearm reduces the volar tilt and supination increases it. When the dorsal tilt is more than 11 degrees, it is associated with loss of grip strength and loss of wrist flexion.[rx]

Posteroanterior view

  • Radial inclination – It is the angle between a line drawn from the radial styloid to the medial end of the articular surface of the radius and a line drawn perpendicular to the long axis of the radius. Loss of radial inclination is associated with loss of grip strength.[rx]
  • Radial length – It is the vertical distance in millimeters between a line tangential to the articular surface of the ulna and a tangential line drawn at the most distal point of radius (radial styloid). Shortening of radial length more than 4mm is associated with wrist pain.[rx]
  • Ulnar variance – It is the vertical distance between a horizontal line parallel to the articular surface of the radius and another horizontal line drawn parallel to the articular surface of the ulnar head. Positive ulnar variance (ulna appears longer than radius) disturbs the integrity of triangular fibrocartilage complex and is associated with loss of grip strength and wrist pain.[rx]

Oblique view

  • Pronated oblique view of the distal radius helps to show the degree of comminution of the distal end radius, depression of the radial styloid and confirming the position the screws at the radial side of the distal end radius. Meanwhile, a supinated oblique view of shows the ulnar side of the distal radius, accessing the depression of dorsal rim of the lunate facet, and the position of the screws on the ulnar side of the distal end radius.[rx]

Plain radiographs

  • Radiographic imaging is important in diagnosis, classification, treatment and follow-up assessment of these fractures. The routine minimal evaluation for distal radius fractures must include two views-a postero-anterior (PA) view and lateral view.[]
  • The PA view should be obtained with the humerus abducted 90 degrees from the chest wall, so that the elbow is at the same level as the shoulder and flexed 90 degrees.[] The palm is maintained flat against the cassette

Computed Tomography

  • CT may be useful and can give significant information in comparison with that obtained with conventional radiography in the evaluation of complex or occult fractures, distal radial articular surface, distal radio-ulnar joint, ventromedial fracture fragment (as described by Melone),[] assessments of fracture healing as well as post-surgical evaluation.[]
  • CT may be indicated for the confirmation of occult fractures suspected on the basis of physical examination when plain films are normal.

Magnetic Resonance Imaging

  • Although this modality is not the first choice in evaluating acute distal radius fractures, it is a powerful diagnostic tool to assess bony, ligamentous and soft tissue abnormalities associated with these fractures.
  • MRI has proved to be a very important diagnostic tool for delineating perforation of triangular fibrocartilage complex (TFCC),[] perforation of interosseous ligaments of the proximal carpal row, evaluating occult fractures, post-traumatic or avascular necrosis of carpal bones.

Treatment of Distal Radius Fractures

Non-Surgical

Treatment available can be broadly

  • Get medical help immediately – If you fall on an outstretched arm, get into a car accident or are hit while playing a sport and feel intense pain in your shoulder area, then get medical care immediately. Distal radius fractures cause significant pain in the front part of your shoulder, closer to the base of your neck. You’ll innately know that something is seriously wrong because you won’t be able to lift your arm up. Other symptoms include immediate swelling and/or bruising near the fracture, grinding sounds with arm movements and potential numbness and tingling in the arm/hand.
  • Apply ice to your fractured clavicle – After you get home from the hospital distal radius fractures (regardless if you had surgery or not), you should apply a bag of crushed ice (or something cold) to your injured in order to reduce the swelling and numb the pain. Ice therapy is effective for acute (recent) injuries that involve swelling because it reduces blood flow by constricting local blood vessels. Apply the crushed ice to your clavicle for 15 minutes three to five times daily until the soreness and inflammation eventually fades away
    Lightly exercise after the pain fades – After a couple of weeks when the swelling has subsided and the pain has faded away, remove your arm sling for short periods and carefully move your arm and shoulder in all different directions. Don’t aggravate the distal radius fractures so that it hurts, but gently reintroduce movements to the involved joints and muscles. Start cautiously, maybe starting with light calisthenics and then progress to holding light weights (five-pound weights to start). Your distal radius fractures need to move a little bit during the later phases of the injury to stimulate complete recovery.
  • Practice stretching and strengthening exercises – of the fingers, elbow, and shoulder if your doctor recommends them.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for six to eight weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)
  • Get a supportive arm sling – Due to their anatomical position, distal radius fractures can’t be cast like a broken limb can. Instead, a supportive arm sling or “figure-eight” splint is typically used for support and comfort, either immediately after the injury if it’s just a hairline fracture or following surgery, if it’s a complicated fracture. A figure-eight splint wraps around both shoulders and the base of your neck in order to support the injured shoulder and keep it positioned up and back. Sometimes a larger swath of material is wrapped around the sling to keep it closer to your body. You’ll need to wear the sling constantly until there is no pain with arm movements, which takes between two to four weeks for children or four to eight weeks for adults.
  • Get a referral to physical therapy – Once you’ve recovered and able to remove your arm sling splint for good, you’ll likely notice that the muscles surrounding your shoulder and upper chest look smaller and feel weaker. That’s because muscle tissue atrophies without movement. If this occurs, then you’ll need to get a referral for some physical rehabilitation. Rehab can start once you are cleared by your orthopedist, are pain-free, and can perform all the basic arm and shoulder movements. A physiotherapist or athletic trainer can show you specific rehabilitation exercises and stretches to restore your muscle strength, joint movements, and flexibility
  • Rigid fixation – osteosynthesis with locking plate, hook plate fixation, fixation with a distal radius locking plate, coracoclavicular screws, Knowles pin fixation.
  • Flexible fixation – simple k wire fixation, tension band wiring, suture anchors, vicryl tape, dacron arterial graft for coracoclavicular ligament reconstruction.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for six to eight weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)

Rest your Hand

Once you’re discharged from the hospital in an arm sling, your top priority is to rest your shoulder and not further inflame the injury. Of course, the arm sling not only provides support, but it also restricts movement, which is why you should keep it on even during sleep. Avoiding the temptation to move your shoulder and arm will help the bone mend quicker and the pain fades away sooner.
  • Depending on what you do for a living and if the injury is to your dominant side, you may need to take a couple of weeks off work to recuperate.
  • Healing takes between four to six weeks in younger people and up to 12 weeks in the elderly, but it depends on the severity of the fractured clavicle.
  • Athletes in good health are typically able to resume their sporting activities within two months of breaking they’re ulnar styloid depending on the severity of the break and the specific sport.
  • Sleeping on your back (with the sling on) is necessary to keep the pressure off your shoulder and prevent stressing the clavicle injury.

Eat nutritiously during your recovery

All bones and tissues in the body need certain nutrients in order to heal properly and in a timely manner. Eating a nutritious and balanced diet that includes lots of minerals and vitamins is proven to help heal broken bones of all types, including ulnar styloid. Therefore, focus on eating lots of fresh produce (fruits and veggies), whole grains, lean meats, and fish to give your body the building blocks needed to properly repair your clavicle. In addition, drink plenty of purified water, milk, and other dairy-based beverages to augment what you eat.

  • Broken bones need ample minerals (calcium, phosphorus, magnesium, boron) and protein to become strong and healthy again.
  • Excellent sources of minerals/protein include dairy products, tofu, beans, broccoli, nuts and seeds, sardines and salmon.
  • Important vitamins that are needed for bone healing include vitamin C (needed to make collagen), vitamin D (crucial for mineral absorption), and vitamin K (binds calcium to bones and triggers collagen formation).
  • Conversely, don’t consume food or drink that is known to impair bone/tissue healing, such as alcoholic beverages, sodas, most fast food items and foods made with lots of refined sugars and preservatives.

Physical therapy

  • Although there will be some pain, it is important to maintain arm motion to prevent stiffness. Often, patients will begin doing exercises for elbow motion immediately after the injury.  After a proximal ulna fracture, it is common to lose some shoulder and arm strength. Once the bone begins to heal, your pain will decrease and your doctor may start gentle shoulder exercises. These exercises will help prevent stiffness and weakness. More strenuous exercises will be started gradually once the fracture is completely healed.

Follow-up care

  • You will need to see your doctor regularly until your fracture heals. During these visits, he or will take x-rays to make sure the bone is healing in a good position. After the bone has healed, you will be able to gradually return to your normal activities.

Breathing Exercise

  • To elevate breathing problem or remove the lung congestion if needed.

Medication

Closed Reduction and Casting

  • All fractures characterized by minor comminution, without or with minimal displacements can be considered for closed reduction and cast immobilization. Mainly type I and type IIA Melone’s fracture can be managed conservatively. The fracture should be kept under closed observation to look for any re-displacement.
  • Despite the widespread acceptance of immobilization in a plaster cast, questions remain regarding the optimum position, the duration of immobilization and the need to extend the cast proximal to the elbow. No clear consensus exists as to the best position for immobilizing the wrist in plaster. Sarmiento et al.[] advocated immobilization in a position of supination to decrease the deforming force of the brachioradialis, which may cause loss of reduction.

Pins and Plaster Technique

  • Placement of pins in the metacarpals and forearm was initially advocated by Bohler in 1923, but it gained popularity after the report by Green, who showed good or excellent results in 86% of his patients.[]
  • However, he noted a high incidence of minor or major complications, one-third of which were related to pin site only. Other researchers also noted that one-third of the complications were related to pins and 16% of the patients needed reoperation for complications.[]

Percutaneous Pinning

  • Extra-articular fractures of the distal end of the radius with extensive comminution or the fractures that have no more than two articular fragments, in which anatomical reduction is obtainable, are amenable to percutaneous pinning of the fracture fragments and application of a plaster cast. A single pin placed through the radial styloid as a means of stabilizing the displaced fracture fragment was first suggested by Lambotte in 1908.[,]

External Fixation

  • External fixation is generally accepted as superior to plaster immobilization in the young patients with an intra-articular comminuted fracture of the distal radius. Other indications for external fixation include some unstable extra-articular fractures with significant comminution and failure to maintain reduction after an initial attempt at closed management in a cast, certain situations of multiple trauma, the presence of dysfunctional contralateral limb, severe open fractures with significant soft tissue injury and neurovascular compromise, and bilateral injuries.[]

Limited Open Reduction

  • In intra-articular fractures that have more than 2 mm of displacement, the radio-carpal joint may be incongruent despite adequate attempts at reduction. The incongruency usually involves the lunate part of the distal end of the radius.
  • The radial styloid process and scaphoid facet are more amenable to reduction through ligamentotaxis or by manipulation and reduction.
  • A new technique of combining external fixation with open reduction of the displaced lunate fossa through a small, longitudinal incision and elevation of the impacted fragment without direct visualization of the surface of the joint has been described.[]

Open Reduction and Internal Fixation

  • One of the recent advances in the treatment of distal radius fractures is the more frequent application of open reduction and internal fixation, especially for intra-articular fractures. There are two groups of fractures for which open reduction and internal fixation is advisable.

Arthroscopic-Assisted Fracture Reduction

  • Intra-articular fractures of the radius can be arthroscopically assessed, and reduction of the articular components and assessment and repair of ligamentous injury can then be undertaken.[,,] The ideal timing for arthroscopically assisted distal radius surgery is 3 to 7 days after injury.

Rehabilitation Guideline for Non-Operative/Conservative rehabilitation [rx]

Acute Stage (0-8 weeks)

Goals

  • Protection with short-arm cast
  • Control pain and edema
  • Maintain range in digits, elbows, shoulder

Interventions

  • AROM and PROM of digits, elbow, shoulder
  • Elevation of hand and digits to control edema
  • Cast removal between 6-8 weeks

Sub Acute Stage

Goal

  • Control pain and edema (TENS, ice)
  • Increase ROM
  • Increase activities of daily living (ADLs)

Interventions

  • AROM and PROM of digits, elbow, shoulder
  • AROM wrist flexion/ extension, forearm supination/ pronation
  • PROM of low load and prolonged stretch

Settled Stage

Goals

  • Regain full ROM
  • Begin strengthening
  • Return to activity

Interventions

  • Continue all ROM exercises
  • Progress to the strengthening of all joints[rx]

Rehabilitation Guideline for External Fixation by Pho et al

Acute Stage (1-6 weeks)

Goals

  • Control pain and edema (TENS, ice)
  • Protect surgical site
  • Maintain ROM of digits, elbow, shoulder

Interventions

  • Elevation
  • AROM of digits, elbow, shoulder
  • AROM forearm supination/ pronation

Sub Acute (7-10 weeks)

Goal

  • Protect fracture site
  • Control pain and edema (TENS, ice)
  • ROM of involved and uninvolved joints

Interventions

  • AROM and PROM of wrist extension/ flexion, radial deviation, and supination/ pronation

Settled Stage (10-16 weeks)

Goal

  • Regain full ROM
  • Begin strengthening
  • Increase tolerance to ADLs

Interventions

  • ROM of wrist flexion/ extension, radial/ ulnar deviation, forearm supination/ pronation progressing to isometric exercises and resisted exercises using dumbbells or resistive bands
  • PROM of low load and prolonged stretching of wrist motions
  • Grip strengthening
  • ADL training within tolerance[rx]

Cryotherapy

  • Cryotherapy is an effective modality for controlling edema in the acute phase after trauma and during rehab due to its ability in helping to decrease blood flow through vasoconstriction limiting the amount of fluid escaping from capillaries to the interstitial fluid[rx]. Cryotherapy can also be combined with compression and elevation in the treatment of edema.[rx]
  • To control pain using cryotherapy, the modality should be applied to the area for 10-15 minutes which can result in pain control up to 2 hours post application.[rx]Precautions for the use of cryotherapy include: over a superficial branch of the nerve, over an open wound, poor sensation or mentation, and very young or very old patients.[rx] Contraindications for cryotherapy include; Acute febrile illness, Vasospasm e.g. Raynaud’s disease, Cryoglobulinemia, Cold urticaria.[rx]

Electrical Stimulation

  • The use of transcutaneous electrical nerve stimulation (TENS) may be used as an adjunct during any phase of rehab to address pain but can be particularly useful for patients that are increasing the level of activity of the wrist. Conventional (high-rate) TENS is useful for disrupting the pain cycle through a prolonged treatment session as great as 24 hours a day.[rx]
  • Low-rate TENS is another form of electrical stimulation that is successful in diminishing pain by targeting motor or nociceptive A-delta nerves. Low-rate TENS has been reported to be effective in pain control for up to 4-5 hours post-treatment.[rx]
  • The literature is still not conclusive on this topic and the results of one study may contradict or, on the contrary, reinforce the results of another study. Yet there is evidence supporting the beneficial effects of electrical stimulation, especially in combination with physiotherapy exercises.

Supervised Active rehabilitation program used in Study

ISOMETRIC EXERCISE

  • Wrist flexors and extensors

ACTIVE RANGE OF MOTION EXERCISE

  • Assisted stretch to forearm flexors and extensor musculature and radial/ulnar deviation
  • Weight-bearing wrist extension exercise(hand on the table with the patient leaning forward on them) to patient tolerance
  • Active stretch to shoulder girdle and rotator cuff musculature
  • Active stretch to elbow flexor and extensor musculature

INTRINSIC HAND MUSCLE EXERCISE

  • Thumb/digit opposition
  • Repetitive squeezing of therapy
  • repetitive towel wringing exercise

STRENGTHENING ROUTINE

  • Biceps curl with 1,5-2 pound weights bilaterally
  • Shoulder abduction, flexion and extension reps with 2-pound weights bilaterally
  • Repetitive squeezing of a rubber ball in affected wrist
  • Flexion and extension of wrist using 1,5-pound weights increasing as tolerated

FUNCTIONAL ACTIVITIES

  • The patient is encouraged to resume pre-accident activities that involve the affected extremity (eg. writing, typing, cooking, etc.)

Complications of Distal Radius Fractures

There were no major complications such as neurovascular injury, infection, or impaired wound healing. Surgery-related complication at 2-year follow-up included nonunion in 3 patients (11%),

  • DRUJ subluxation in 3 patients (11%),
  • Implant migration in 4 patients (14%),
  • Radiographic resorption of the ulnar styloid in 4 patients (14%).
  • Radiographic nonunion was noted in 1 patient in group A (8%) and 2 in group B (13%). Residual DRUJ subluxation was noted in 3 patients; all were in group B (20%).
  • Partial or complete radiographic resorption of the ulna was found in 1 patient in group A (8%) and 3 in group B (20%).
  • Implant migration was noted in 1 patient in group A (8%), and 2 in group B (13%).
  • Subsequent removal surgery due to implant irritation occurred in 13 patients (46%), with 4 in group A (31%) and 8 in group B (53%).
  • A total of 11 patients (39%) with surgery-related complications included 5 (38%) in group A and 12 (80%) in group B, with a significant difference

There are risks associated with any type of surgery. These include

  • Nonunion (1-5%)
  • Infection (~4.8%)
  • 4% in the surgical group develop adhesive capsulitis requiring surgical intervention
  • Bleeding
  • Problems with wound healing
  • Blood clots
  • Damage to blood vessels or nerves
  • Reaction to anesthesia
  • Hardware prominence
  • Malunion with cosmetic deformity
  • Restriction of ROM
  • The difficulty with bone healing
  • Hardware irritation
  • Fracture comminution (Z deformity)
  • Fracture displacement
  • Increased fatigue with overhead activities
  • Dissatisfaction with appearance
  • The difficulty with shoulder straps, backpacks and the like
  • ~30% of patient request plate removal
  • Superior plates associated with increased irritation
  • Superior plates associated with increased risk of subclavian artery or vein penetration

References

Ulnar Styloid Fracture

By

Humerus Surgical Neck Fracture; Diagnosis, Treatment

Humerus Surgical Neck Fracture/Proximal humeral fractures are common, particularly in the elderly. Along with proximal femoral, distal radial, and vertebral-body fractures, they are a common type of osteoporotic fracture. Women are affected two to three times as often as men [. Proximal humerus and humerus fractures account for 4% to 6% and 1% to 3% of all fractures respectively in both young and elderly patients.

The proximal humerus has two necks. The anatomic neck is the old epiphyseal plate, and the surgical neck is the metaphyseal area below the humeral head. The blood supply is the anterior and posterior humeral circumflex artery with the axillary nerve as the major nerve of this region. The humeral shaft is a cylindrical bone that gradually becomes triangular distally. This bone serves as an insertion site for the pectoralis major, deltoid, and coracobrachialis and is the site of origin for the brachialis, triceps, and brachioradialis. The radial nerve is the major nerve of the humerus shaft which is seen in the spiral groove and is approximately 14 cm from the lateral epicondyle and 20 cm from the medial epicondyle. The major nerves of the distal humerus are the ulnar nerve and radial nerve. Distal humerus fractures comprise the supracondylar fractures, single condyle fractures, bi-column fractures, and coronal shear fractures. Treatment options include open reduction and internal fixation, closed reduction and percutaneous pinning, and intramedullary nailing or bracing.

Humerus Surgical Neck Fracture

Anatomy of Humerus Surgical Neck Fracture

The proximal humerus includes the humeral head, greater tuberosity, lesser tuberosity, and the humeral shaft. In the sagittal plane, the humeral head has retroverted an average of 30 degrees relative to the humeral shaft []. In the coronal plane, it is angled 130 to 150 degrees cephalad relative to the diaphysis. Fractures through the anatomic neck can result in significant vascular compromise to humeral head leading to avascular necrosis [].

In the neutral rotation, the greater tuberosity forms the lateral border of the proximal humerus. The lesser tuberosity, which sits directly anterior in this position, becomes profiled medially when the humerus is internally rotated—this creates a rounded silhouette “lightbulb sign” on radiograph. The long head of the biceps passes between the two tuberosities in the intertubercular groove, approximately 1 cm lateral to the midline of the humerus, and its relationship is an important landmark during fracture reduction [].

The supraspinatus muscle, innervated by the suprascapular nerve, attaches to the superior facet of the greater tuberosity with a force vector that pulls predominantly in a medial direction. The infraspinatus muscle, also innervated by the suprascapular nerve, inserts on the middle facet of the greater tuberosity. The teres minor muscle, innervated by the axillary nerve, attaches to the inferior facet. Together, these three externally rotate and yield a posteromedially directed deforming force. Therefore, if the greater tuberosity is fractured, it is displaced posteromedially. If it remains intact, and there is a surgical neck fracture, the resulting deformity is typically varus and external rotation. Anteriorly, the subscapularis, innervated by the upper and lower subscapular nerves, attaches to the lesser tuberosity, resulting in the anteromedial displacement of this osseous fragment if fractured [, ]. The pectoralis major tendon insertion is an important landmark, especially during hemiarthroplasty.

The ulnar nerve arises from the medial cord of the brachial plexus and begins in the anterior compartment. It travels anterior to the medial intermuscular septum and posterior to the brachial artery. At the arcade of Struthers, approximately 8 cm from the medial epicondyle, it crosses to the posterior compartment to enter the cubital tunnel. It also provides no innervation to muscles proximal to the elbow.

The radial nerve is a terminal branch of the posterior cord of the brachial plexus. It begins in the posterior compartment and then passes through to the anterior compartment. It begins anteromedially and travels along the subscapularis proximally to join with the profound brachii at the triangular interval. About 10–14 cm from the lateral acromion, the nerve and artery travel along the posterior humerus in the spiral groove, separating the medial and lateral heads of the triceps at about the level of the deltoid tuberosity. It enters the anterior compartment through the lateral intermuscular septum approximately 10 cm from the distal articular surface, here it is tightly bound by the septum and therefore susceptible to traction injuries and radial nerve palsies [, ].

Humerus Surgical Neck Fracture

Types of Humerus Surgical Neck Fracture

AO/OTA Classification of Distal Humerus Fractures

Type A Extraarticular (supracondylar fracture),80% are extension type; epicondyle
Type B Intraarticular-Single column (partial articular-isolated condylar, coronal shear, epicondyle with particular extension)
Type C Intraarticular-Both columns fractured and no portion of the joint contiguous with the shaft (complete articular)
Each type further divided by  degree and location of fracture comminution

The AO classification divides proximal humeral fractures into three groups, A, B and C, each with subgroups, and places more emphasis on the blood supply to the articular surface. The assumption is that if either the lesser or greater tuberosity remains attached to the particular segment, then blood supply is probably adequate to avoid avascular necrosis.

Type A: extra-articular unifocal (either tuberosity +/- surgical neck of the humerus)

  • A1: extra-articular unifocal fracture
  • A2: extra-articular unifocal fracture with an impacted metaphyseal fracture
  • A3: extra-articular unifocal fracture with a non-impacted metaphyseal fracture

Type B: extra-articular bifocal (both tuberosities +/- surgical neck of the humerus or glenohumeral dislocation)

  • B1: extra-articular bifocal fractures with impacted metaphyseal fracture
  • B2: extra-articular bifocal fractures with non-impacted metaphyseal fracture
  • B3: extra-articular bifocal fractures with glenohumeral joint dislocation

Type C: extra-articular (anatomical neck) but compromise the vascular supply of the particular segment

  • C1: anatomical neck fracture, minimally displaced
  • C2: anatomical neck fracture, displaced and impacted
  • C3: anatomical neck fracture with glenohumeral joint dislocation

The risk of avascular necrosis increases from type A (very low) to type C (high risk) and thus determines treatment.

Milch Classification of Single Column Condyle Fractures

Milch Type I Lateral trochlear ridge intact
Milch Type II Fracture through the lateral trochlear ridge

Jupiter Classification of Two-Column Distal Humerus Fractures

High-T Transverse fx proximal to or at upper olecranon fossa
Low-T Transverse fx just proximal to trochlea (common)
Y Oblique fx line through both columns with distal vertical fx line
H Trochlea is a free fragment (risk of AVN)
Medial lambda Proximal fx line exists medially
Lateral lambda Proximal fx line exists laterally
Multiplane T T type with an additional fracture in the coronal plane

The Gartland classification is a system of categorizing supracondylar humerus fractures, clinically useful as it predicts the likelihood of associated neurovascular injuries, such as anterior interosseous nerve neurapraxia or brachial artery disruption.

Supracondylar fractures: Gartland classification
Type Description[rx]
I Non-displaced
II Angulated with intact posterior cortex
IIA Angulation
IIB Angulation with rotation
III Complete displacement but have periosteal (medial/lateral) contact
IIIA The medial periosteal hinge is intact. Distal fragment goes posteromedially
IIIB Lateral periosteal hinge intact. Distal fragment goes posterolaterally
IV Periostial disruption with instability in both flexion and extension

The classification has been variably adapted by multiple authors. What is presented below is what will probably be understood by most surgeons and radiologists and consists of four major groupings, based on the number of displaced parts?

No fragments meet the criteria for displacement; a fracture with no fragments considered displaced is defined as a one-part fracture regardless of the actual number of fracture lines or their location.

  • fracture lines involve 1-4 parts
  • none of the parts are displaced (i.e <1cm and <45 degrees)

These undisplaced/minimally displaced fractures account for ~70-80% of all proximal humeral fractures and are almost always treated conservatively.

One segment is displaced, which may be the greater tuberosity, lesser tuberosity, or articular segment at the level of the anatomic neck or surgical neck.

  • fracture lines involve 2-4 parts
  • one part is displaced (i.e >1cm or >45 degrees)

Four possible types of two-part fractures exist (one for each part):

  • surgical neck: most common
  • greater tuberosity
    • frequently seen in the setting of anterior shoulder dislocation
    • a lower threshold of displacement (> 5mm) has been proposed
  • anatomical neck
  • lesser tuberosity: uncommon

These fractures account for approximately 20% of proximal humeral fractures.

With a three-part fracture, one tuberosity is displaced and the surgical neck fracture is displaced. The remaining tuberosity is attached, which produces a rotational deformity.

  • fracture lines involve 3-4 parts
  • two parts are displaced (i.e >1cm or >45 degrees)

Two three-part fracture patterns are encountered:

  • greater tuberosity and shaft are displaced with respect to the lesser tuberosity and articular surface which remain together
    • most common three-part pattern
  • lesser tuberosity and shaft are displaced with respect to the greater tuberosity and articular surface which remain together

These fractures account for approximately 5% of proximal humeral fractures.

All four segments (both tuberosities, the articular surface, and the shaft) meet criteria for displacement. The articular segment typically is laterally displaced and out of contact with the glenoid [rx]. This is a severe injury and carries a high risk of avascular necrosis.

  • fracture lines involve more than 4 parts
  • three parts are displaced (i.e., >1 cm or >45 degrees) with respect to the 4th

These fractures are uncommon (<1% of proximal humeral fractures).

This pattern has poor non-operative results, and as the articular surface is no longer attached to any parts of the humerus which are attached to soft tissues, it has a high incidence of osteonecrosis.

Valgus-Impacted Four-Part Fractures

Neer added this pattern [rx] as a separate category in 2002 []. In this situation, the head is rotated into a valgus posture and driven down between the tuberosities, which splay out to accommodate the head. Unlike in the classic four-part fracture, the articular surface maintains contact with the glenoid, and is not laterally displaced. This four-part fracture warranted its own category because the prognosis and treatment for this injury are different than those for the classic four-part fracture [, ].

Humerus Surgical Neck Fracture

Causes of Humerus Surgical Neck Fracture

Humerus fractures usually occur after physical trauma, falls, excess physical stress, or pathological conditions. Falls that produce humerus fractures among the elderly are usually accompanied by a preexisting risk factor for bone fractures, such as osteoporosis, a low bone density, or vitamin B deficiency.[rx]

  • Proximal humerus fractures –  most often occur among elderly people with osteoporosis who fall on an outstretched arm.[rx] Less frequently, proximal fractures occur from motor vehicle accidents, gunshots, and violent muscle contractions from an electric shock or seizure.[rx]
  • A stress fracture of the proximal – and shaft regions can occur after an excessive amount of throwing, such as pitching in baseball.[rx]
  • Sudden forceful  fall down
  • Road traffic accident
  • Falls – Falling onto an outstretched hand is one of the most common causes of a broken clavicle.
  • Sports injuries – Many Scapular fractures occur during contact sports or sports in which you might fall onto an outstretched hand — such as in-line skating or snowboarding.
  • Motor vehicle crashes – Motor vehicle crashes can cause wrist bones to break, sometimes into many pieces, and often require surgical repair.
  • Have osteoporosis – a disease that weakens your bones
  • Eave low muscle mass or poor muscle strength – or lack agility and have poor balance (these conditions make you more likely to fall)
  • Walk or do other activities in snow or on the ice – or do activities that require a lot of forwarding momenta, such as in-line skating and skiing
  • Wave an inadequate – intake of calcium or vitamin D
  • Football or soccer – especially on artificial turf

In younger patients, proximal humeral fractures are usually caused by high-energy trauma, such as traffic accidents or sporting accidents. In older patients, the most common cause is a fall onto the outstretched arm from a standing position, which is a type of low-energy trauma [,

Symptoms of Humerus Surgical Neck Fracture

  • Typical signs and symptoms include pain, swelling, bruising, and limited range of motion at the shoulder. Deformity may be present in severe fractures, however, a musculature may cause absence of deformity on inspection.[rx]
  • Numbness over the outside part of the upper arm and deltoid muscle weakness may indicate axillary nerve injury.[rx]
  • Symptoms from poor blood circulation in the arm are uncommon due to collateral circulation in the arm.[rx]

Diagnosis of Humerus Surgical Neck Fracture

Typically, the patient holds the injured arm in a protective posture close to the chest. Pain, swelling, hematoma, and tenderness of the proximal portion of the humerus may indicate the presence of a fracture. The perfusion and sensorimotor function of the limb should be tested in the periphery. The functioning of the axillary nerve should be tested as well.

Radiographs

  • Recommended views
      • obtain AP and lateral of humerus and elbow
      • include the entire length of humerus and forearm

Obtain wrist radiographs if elbow injury present or distal tenderness on exam

  • oblique radiographs may assist in surgical planning
  • traction radiographs may assist in surgical planning specifically evaluate if there is continuity of the trochlear fragment to medial epicondylar fragment, this can influence hardware choice

CT

  • often obtained for surgical planning
  • especially helpful when shear fractures of the capitellum and trochlea are suspected
  • 3D CT scan improves the intraobserver and interobserver reliability of several classification systems

MRI

  • usually not indicated in acute injury

Treatment of Humerus Surgical Neck Fracture

Non-Pharmacological

  •  Immobilization –  in either a sling or a Velpeau bandage, with early gentle range of motion exercises. Some fractures may reduce with gravity alone as the patient resumes ambulating, but for some fractures, the closed reduction may improve the deformity and the amount of bony contact.
  • In the acute setting – pain control can be difficult for patients. Resting in a supine position allows the arm to extend at the fracture site, and leads to pain and discomfort. Placing the injured extremity in a sling and having the patient rest in an upright or semi-reclining position with some bolsters behind the arm can help to reduce the pain. Patients may also find it more comfortable to sleep sitting in a reclining position when they are at home. Patients and caregivers should be advised that prolonged immobilization can be detrimental to the outcome.
  • The range of Motion Exercises – Due to their limited movement following a proximal humerus fracture, individuals lose their range of shoulder motion and may develop stiffness of the shoulder joint. Your physical therapist will assess your shoulder motion compared to expected normal motion and the motion of shoulder of your noninjured arm, and lead you through a program of motion exercises to restore shoulder function.
  • Strengthening Exercises – The muscles of the shoulder and upper back work together to allow for normal upper-body motion. Based on the way the shoulder joint is designed (a ball-and-socket joint, like a golf ball on a golf tee), there are many directions in which the shoulder may move. Therefore, the balanced strength of all the upper body muscles is crucial to make sure that the shoulder joint is protected and efficient with its movements. When there is a fracture to the proximal humerus (near the “ball” segment of the joint), the muscles around the shoulder girdle weaken, as they are not being used normally; this process is called “atrophy.” There are many exercises that can be done to strengthen the muscles around the shoulder so that each muscle is able to properly perform its job. Often, building strength after a fracture can take weeks to months due to atrophy. Your physical therapist will help you develop a strengthening program that is safe and comprehensive.
  • Manual Therapy – Physical therapists are trained in manual (hands-on) therapy. When appropriate, based on the stage of healing at your fracture site, your physical therapist will gently move your shoulder joint and surrounding muscles as needed to improve their motion, flexibility, and strength. These techniques can target areas that are difficult to treat on your own.
  • Modalities – Your physical therapist may recommend therapeutic modalities, such as ice and heat to aid in pain management.
  • Functional Training – Whether you work in a factory, are a mother of a young child, work as a secretary, or are an older adult, the ways in which you perform your normal daily activities are important. Improper movement patterns after a fracture may come back to haunt you, as they may lead to future secondary injuries. Physical therapists are experts in assessing movement quality. Your physical therapist will be able to point out and correct faulty movements, so you are able to regain use of and maintain, a pain-free shoulder.
  • Physiotherapy – which can be self-directed or in a formal setting, depending on the patient’s wishes and abilities, should begin no later than two weeks after the injury [, ]. Initially, pendulum exercises will allow for a range of motion without placing weight-bearing stress on the fracture. After the patient is more comfortable, finger crawl exercises along a vertical surface can help with an overhead range of motion.

Medications

Medication can be prescribed to ease the pain.

Surgery 

  • Closed reduction with percutaneous pinning (CRPP)
  • Open reduction with internal fixation (ORIF)
  • Intramedullary rod fixation
  • Shoulder arthroplasty
  • Reverse shoulder arthroplasty

Suture Fixation

  • This technique has been described as a method to treat proximal humerus fractures and avoid the complications associated with implant placement and arthroplasty [, ]. Using this method, nonabsorbable sutures are passed through the rotator cuff tissue and/or the bone fragments, in order to obtain and maintain the reduction.
  • This technique avoids extensive soft tissue stripping and the risk of symptomatic implants. It also preserves the bone stock of the proximal humerus, which may allow for future procedures.

Plate Fixation

  • Operative fixation of the proximal humerus has evolved over the years. Development of locking technology, as well as a site-specific implant, has helped overcome some of the problems initially seen with operative fixation. Locking screws have improved the fixation of the head and soft metaphyseal, and often osteoporotic bone, frequently associated with these patients [rx].
  • The number of proximal screw options and trajectories attempts to maximize the fixation in the head of the humerus. Conventional plating may still be used in the case of a young patient with good bone quality, or for the treatment of simple two-part greater tuberosity fractures. Successful treatment with either plating technique relies on bone quality, as well as the accuracy of reduction and humeral head viability [, , , ].

Intramedullary nail

  • The use of an intramedullary device has been advocated by some as an alternative to plate and screw fixation []. This technique is thought to be less invasive to the surrounding soft tissues.
  • There has been concern regarding the disruption of the rotator cuff and injury to the footprint of the supraspinatus, but meticulous attention to dissection and repair of the supraspinatus tendon; establishing a starting point on the superior articular surface rather than the footprint of the tendon; and minimizing nail prominence, can decrease the chances of postoperative shoulder pain [, ].
  • Although the intramedullary nail fixation has been reported for two-part, three-part and fourpart proximal humerus fractures, currently the most appropriate patient is one that presents with a two-part surgical neck fracture [, ].

Surgical Approaches

  • The deltopectoral approach to the proximal humerus has been the most widely used approach for operative fixation of proximal humerus fractures. Alternative approaches have been used to allow for improved access and ease of implant positioning []. Both the superior subacromial approach and the extended anterolateral acromial approach use a deltoid-splitting interval while protecting the axillary nerve to access the fracture site. These approaches decrease the amount of soft tissue dissection and retraction that often necessary with a standard deltopectoral approach and improve access to the lateral and posterior regions of the proximal humerus.

Augmentation

  • Structural and biologic augmentations have been used in the treatment of proximal humerus fractures to improve the rate of healing and decrease the chance of displacement. The use of autograft, allograft, cement, or bone substitutes can help to fill voids in the metaphyseal area as well as provide structure or biologic support to the fracture [, ].
  • Endosteal fibular strut allografts have also been used to provide stability to the fracture especially in cases where there is a loss of the posterior medial calcar support and subsequent varus deformity [].

Arthroplasty

  • The role of arthroplasty for the treatment of proximal humerus fractures has fluctuated over time. Neer initially recommended the use of humeral head replacement for complex three-part and four-part fractures [].
  • Using conventional plating techniques, the incidence of nonunion and avascular necrosis of the humeral head was high for these types of injuries. But with the development of site-specific plates and locking plate technology, the fixation of proximal humerus fractures has improved and the role of arthroplasty for acute fractures has diminished.
  • Humeral head replacement may still have a role in fractures that are associated with multi fragmentary humeral head cleavage, un reconstructable humeral head, or humeral head devoid of any soft tissue rendering it avascular. Shoulder arthroplasty can also be used in the cases of delayed presentation or as a salvage procedure following failed operative fixation. The role of hemiarthroplasty in the elderly has also changed, as the functional results have been poorer than expected [].

Complications of Humerus Surgical Neck Fracture

There are risks associated with any type of surgery. These include:

  • Nonunion (1-5%)
  • Infection (~4.8%)
  • Pneumothorax
  • Adhesive capsulitis
  • 4% in the surgical group develop adhesive capsulitis requiring surgical intervention
  • Bleeding
  • Problems with wound healing
  • Blood clots
  • Damage to blood vessels or nerves
  • Reaction to anesthesia
  • Hardware prominence
  • Malunion with cosmetic deformity
  • Restriction of ROM
  • The difficulty with bone healing
  • Lung injury
  • Hardware irritation
  • Fracture comminution (Z deformity)
  • Fracture displacement
  • Increased fatigue with overhead activities
  • Dissatisfaction with appearance
  • The difficulty with shoulder straps, backpacks and the like
  • ~30% of patient request plate removal
  • Superior plates associated with increased irritation
  • Superior plates associated with increased risk of subclavian artery or vein penetration.

References

Humerus Surgical Neck Fracture

By

Humerus Anatomical Neck Fracture, Diagnosis, Treatment

Humerus Anatomical Neck Fracture/Proximal humeral fractures are common, particularly in the elderly. Along with proximal femoral, distal radial, and vertebral-body fractures, they are a common type of osteoporotic fracture. Women are affected two to three times as often as men [. Proximal humerus and humerus fractures account for 4% to 6% and 1% to 3% of all fractures respectively in both young and elderly patients.

The proximal humerus has two necks. The anatomic neck is the old epiphyseal plate, and the surgical neck is the metaphyseal area below the humeral head. The blood supply is the anterior and posterior humeral circumflex artery with the axillary nerve as the major nerve of this region. The humeral shaft is a cylindrical bone that gradually becomes triangular distally. This bone serves as an insertion site for the pectoralis major, deltoid, and coracobrachialis and is the site of origin for the brachialis, triceps, and brachioradialis. The radial nerve is the major nerve of the humerus shaft which is seen in the spiral groove and is approximately 14 cm from the lateral epicondyle and 20 cm from the medial epicondyle. The major nerves of the distal humerus are the ulnar nerve and radial nerve. Distal humerus fractures comprise the supracondylar fractures, single condyle fractures, bi-column fractures, and coronal shear fractures. Treatment options include open reduction and internal fixation, closed reduction and percutaneous pinning, and intramedullary nailing or bracing.

Humeral Neck Fracture

Anatomy of Humerus Anatomical Neck Fracture

The proximal humerus includes the humeral head, greater tuberosity, lesser tuberosity, and the humeral shaft. In the sagittal plane, the humeral head has retroverted an average of 30 degrees relative to the humeral shaft []. In the coronal plane, it is angled 130 to 150 degrees cephalad relative to the diaphysis. Fractures through the anatomic neck can result in significant vascular compromise to humeral head leading to avascular necrosis [].

In the neutral rotation, the greater tuberosity forms the lateral border of the proximal humerus. The lesser tuberosity, which sits directly anterior in this position, becomes profiled medially when the humerus is internally rotated—this creates a rounded silhouette “lightbulb sign” on radiograph. The long head of the biceps passes between the two tuberosities in the intertubercular groove, approximately 1 cm lateral to the midline of the humerus, and its relationship is an important landmark during fracture reduction [].

The supraspinatus muscle, innervated by the suprascapular nerve, attaches to the superior facet of the greater tuberosity with a force vector that pulls predominantly in a medial direction. The infraspinatus muscle, also innervated by the suprascapular nerve, inserts on the middle facet of the greater tuberosity. The teres minor muscle, innervated by the axillary nerve, attaches to the inferior facet. Together, these three externally rotate and yield a posteromedially directed deforming force. Therefore, if the greater tuberosity is fractured, it is displaced posteromedially. If it remains intact, and there is a surgical neck fracture, the resulting deformity is typically varus and external rotation. Anteriorly, the subscapularis, innervated by the upper and lower subscapular nerves, attaches to the lesser tuberosity, resulting in the anteromedial displacement of this osseous fragment if fractured [, ]. The pectoralis major tendon insertion is an important landmark, especially during hemiarthroplasty.

The ulnar nerve arises from the medial cord of the brachial plexus and begins in the anterior compartment. It travels anterior to the medial intermuscular septum and posterior to the brachial artery. At the arcade of Struthers, approximately 8 cm from the medial epicondyle, it crosses to the posterior compartment to enter the cubital tunnel. It also provides no innervation to muscles proximal to the elbow.

The radial nerve is a terminal branch of the posterior cord of the brachial plexus. It begins in the posterior compartment and then passes through to the anterior compartment. It begins anteromedially and travels along the subscapularis proximally to join with the profound brachii at the triangular interval. About 10–14 cm from the lateral acromion, the nerve and artery travel along the posterior humerus in the spiral groove, separating the medial and lateral heads of the triceps at about the level of the deltoid tuberosity. It enters the anterior compartment through the lateral intermuscular septum approximately 10 cm from the distal articular surface, here it is tightly bound by the septum and therefore susceptible to traction injuries and radial nerve palsies [, ].

Proximal humeral fractures

Types of Humerus Anatomical Neck Fracture

AO/OTA Classification of Distal Humerus Fractures

Type A Extraarticular (supracondylar fracture),80% are extension type; epicondyle
Type B Intraarticular-Single column (partial articular-isolated condylar, coronal shear, epicondyle with particular extension)
Type C Intraarticular-Both columns fractured and no portion of the joint contiguous with the shaft (complete articular)
Each type further divided by  degree and location of fracture comminution

The AO classification divides proximal humeral fractures into three groups, A, B and C, each with subgroups, and places more emphasis on the blood supply to the articular surface. The assumption is that if either the lesser or greater tuberosity remains attached to the particular segment, then blood supply is probably adequate to avoid avascular necrosis.

Type A: extra-articular unifocal (either tuberosity +/- surgical neck of the humerus)

  • A1: extra-articular unifocal fracture
  • A2: extra-articular unifocal fracture with an impacted metaphyseal fracture
  • A3: extra-articular unifocal fracture with a non-impacted metaphyseal fracture

Type B: extra-articular bifocal (both tuberosities +/- surgical neck of the humerus or glenohumeral dislocation)

  • B1: extra-articular bifocal fractures with impacted metaphyseal fracture
  • B2: extra-articular bifocal fractures with non-impacted metaphyseal fracture
  • B3: extra-articular bifocal fractures with glenohumeral joint dislocation

Type C: extra-articular (anatomical neck) but compromise the vascular supply of the particular segment

  • C1: anatomical neck fracture, minimally displaced
  • C2: anatomical neck fracture, displaced and impacted
  • C3: anatomical neck fracture with glenohumeral joint dislocation

The risk of avascular necrosis increases from type A (very low) to type C (high risk) and thus determines treatment.

Milch Classification of Single Column Condyle Fractures

Milch Type I Lateral trochlear ridge intact
Milch Type II Fracture through the lateral trochlear ridge

Jupiter Classification of Two-Column Distal Humerus Fractures

High-T Transverse fx proximal to or at upper olecranon fossa
Low-T Transverse fx just proximal to trochlea (common)
Y Oblique fx line through both columns with distal vertical fx line
H Trochlea is a free fragment (risk of AVN)
Medial lambda Proximal fx line exists medially
Lateral lambda Proximal fx line exists laterally
Multiplane T T type with an additional fracture in the coronal plane

The Gartland classification is a system of categorizing supracondylar humerus fractures, clinically useful as it predicts the likelihood of associated neurovascular injuries, such as anterior interosseous nerve neurapraxia or brachial artery disruption.

Supracondylar fractures: Gartland classification
Type Description[rx]
I Non-displaced
II Angulated with intact posterior cortex
IIA Angulation
IIB Angulation with rotation
III Complete displacement but have periosteal (medial/lateral) contact
IIIA The medial periosteal hinge is intact. Distal fragment goes posteromedially
IIIB Lateral periosteal hinge intact. Distal fragment goes posterolaterally
IV Periostial disruption with instability in both flexion and extension

The classification has been variably adapted by multiple authors. What is presented below is what will probably be understood by most surgeons and radiologists and consists of four major groupings, based on the number of displaced parts?

No fragments meet the criteria for displacement; a fracture with no fragments considered displaced is defined as a one-part fracture regardless of the actual number of fracture lines or their location.

  • fracture lines involve 1-4 parts
  • none of the parts are displaced (i.e <1cm and <45 degrees)

These undisplaced/minimally displaced fractures account for ~70-80% of all proximal humeral fractures and are almost always treated conservatively.

One segment is displaced, which may be the greater tuberosity, lesser tuberosity, or articular segment at the level of the anatomic neck or surgical neck.

  • fracture lines involve 2-4 parts
  • one part is displaced (i.e >1cm or >45 degrees)

Four possible types of two-part fractures exist (one for each part):

  • surgical neck: most common
  • greater tuberosity
    • frequently seen in the setting of anterior shoulder dislocation
    • a lower threshold of displacement (> 5mm) has been proposed
  • anatomical neck
  • lesser tuberosity: uncommon

These fractures account for approximately 20% of proximal humeral fractures.

With a three-part fracture, one tuberosity is displaced and the surgical neck fracture is displaced. The remaining tuberosity is attached, which produces a rotational deformity.

  • fracture lines involve 3-4 parts
  • two parts are displaced (i.e >1cm or >45 degrees)

Two three-part fracture patterns are encountered:

  • greater tuberosity and shaft are displaced with respect to the lesser tuberosity and articular surface which remain together
    • most common three-part pattern
  • lesser tuberosity and shaft are displaced with respect to the greater tuberosity and articular surface which remain together

These fractures account for approximately 5% of proximal humeral fractures.

All four segments (both tuberosities, the articular surface, and the shaft) meet criteria for displacement. The articular segment typically is laterally displaced and out of contact with the glenoid [rx]. This is a severe injury and carries a high risk of avascular necrosis.

  • fracture lines involve more than 4 parts
  • three parts are displaced (i.e., >1 cm or >45 degrees) with respect to the 4th

These fractures are uncommon (<1% of proximal humeral fractures).

This pattern has poor non-operative results, and as the articular surface is no longer attached to any parts of the humerus which are attached to soft tissues, it has a high incidence of osteonecrosis.

Valgus-Impacted Four-Part Fractures

Neer added this pattern [rx] as a separate category in 2002 []. In this situation, the head is rotated into a valgus posture and driven down between the tuberosities, which splay out to accommodate the head. Unlike in the classic four-part fracture, the articular surface maintains contact with the glenoid, and is not laterally displaced. This four-part fracture warranted its own category because the prognosis and treatment for this injury are different than those for the classic four-part fracture [, ].

Proximal humeral fractures

Causes of Humerus Anatomical Neck Fracture

Humerus fractures usually occur after physical trauma, falls, excess physical stress, or pathological conditions. Falls that produce humerus fractures among the elderly are usually accompanied by a preexisting risk factor for bone fractures, such as osteoporosis, a low bone density, or vitamin B deficiency.[rx]

  • Proximal humerus fractures –  most often occur among elderly people with osteoporosis who fall on an outstretched arm.[rx] Less frequently, proximal fractures occur from motor vehicle accidents, gunshots, and violent muscle contractions from an electric shock or seizure.[rx]
  • A stress fracture of the proximal – and shaft regions can occur after an excessive amount of throwing, such as pitching in baseball.[rx]
  • Sudden forceful  fall down
  • Road traffic accident
  • Falls – Falling onto an outstretched hand is one of the most common causes of a broken clavicle.
  • Sports injuries – Many Scapular fractures occur during contact sports or sports in which you might fall onto an outstretched hand — such as in-line skating or snowboarding.
  • Motor vehicle crashes – Motor vehicle crashes can cause wrist bones to break, sometimes into many pieces, and often require surgical repair.
  • Have osteoporosis – a disease that weakens your bones
  • Eave low muscle mass or poor muscle strength – or lack agility and have poor balance (these conditions make you more likely to fall)
  • Walk or do other activities in snow or on the ice – or do activities that require a lot of forwarding momenta, such as in-line skating and skiing
  • Wave an inadequate – intake of calcium or vitamin D
  • Football or soccer – especially on artificial turf

In younger patients, proximal humeral fractures are usually caused by high-energy trauma, such as traffic accidents or sporting accidents. In older patients, the most common cause is a fall onto the outstretched arm from a standing position, which is a type of low-energy trauma [,

Symptoms of Humerus Anatomical Neck Fracture

  • Typical signs and symptoms include pain, swelling, bruising, and limited range of motion at the shoulder. Deformity may be present in severe fractures, however, a musculature may cause absence of deformity on inspection.[rx]
  • Numbness over the outside part of the upper arm and deltoid muscle weakness may indicate axillary nerve injury.[rx]
  • Symptoms from poor blood circulation in the arm are uncommon due to collateral circulation in the arm.[rx]

Diagnosis of Humerus Anatomical Neck Fracture

Typically, the patient holds the injured arm in a protective posture close to the chest. Pain, swelling, hematoma, and tenderness of the proximal portion of the humerus may indicate the presence of a fracture. The perfusion and sensorimotor function of the limb should be tested in the periphery. The functioning of the axillary nerve should be tested as well.

Radiographs

  • Recommended views
      • obtain AP and lateral of humerus and elbow
      • include the entire length of humerus and forearm

Obtain wrist radiographs if elbow injury present or distal tenderness on exam

  • oblique radiographs may assist in surgical planning
  • traction radiographs may assist in surgical planning specifically evaluate if there is continuity of the trochlear fragment to medial epicondylar fragment, this can influence hardware choice

CT

  • often obtained for surgical planning
  • especially helpful when shear fractures of the capitellum and trochlea are suspected
  • 3D CT scan improves the intraobserver and interobserver reliability of several classification systems

MRI

  • usually not indicated in acute injury

Treatment of Humerus Anatomical Neck Fracture

Non-Pharmacological

  •  Immobilization –  in either a sling or a Velpeau bandage, with early gentle range of motion exercises. Some fractures may reduce with gravity alone as the patient resumes ambulating, but for some fractures, the closed reduction may improve the deformity and the amount of bony contact.
  • In the acute setting – pain control can be difficult for patients. Resting in a supine position allows the arm to extend at the fracture site, and leads to pain and discomfort. Placing the injured extremity in a sling and having the patient rest in an upright or semi-reclining position with some bolsters behind the arm can help to reduce the pain. Patients may also find it more comfortable to sleep sitting in a reclining position when they are at home. Patients and caregivers should be advised that prolonged immobilization can be detrimental to the outcome.
  • The range of Motion Exercises – Due to their limited movement following a proximal humerus fracture, individuals lose their range of shoulder motion and may develop stiffness of the shoulder joint. Your physical therapist will assess your shoulder motion compared to expected normal motion and the motion of shoulder of your noninjured arm, and lead you through a program of motion exercises to restore shoulder function.
  • Strengthening Exercises – The muscles of the shoulder and upper back work together to allow for normal upper-body motion. Based on the way the shoulder joint is designed (a ball-and-socket joint, like a golf ball on a golf tee), there are many directions in which the shoulder may move. Therefore, the balanced strength of all the upper body muscles is crucial to make sure that the shoulder joint is protected and efficient with its movements. When there is a fracture to the proximal humerus (near the “ball” segment of the joint), the muscles around the shoulder girdle weaken, as they are not being used normally; this process is called “atrophy.” There are many exercises that can be done to strengthen the muscles around the shoulder so that each muscle is able to properly perform its job. Often, building strength after a fracture can take weeks to months due to atrophy. Your physical therapist will help you develop a strengthening program that is safe and comprehensive.
  • Manual Therapy – Physical therapists are trained in manual (hands-on) therapy. When appropriate, based on the stage of healing at your fracture site, your physical therapist will gently move your shoulder joint and surrounding muscles as needed to improve their motion, flexibility, and strength. These techniques can target areas that are difficult to treat on your own.
  • Modalities – Your physical therapist may recommend therapeutic modalities, such as ice and heat to aid in pain management.
  • Functional Training – Whether you work in a factory, are a mother of a young child, work as a secretary, or are an older adult, the ways in which you perform your normal daily activities are important. Improper movement patterns after a fracture may come back to haunt you, as they may lead to future secondary injuries. Physical therapists are experts in assessing movement quality. Your physical therapist will be able to point out and correct faulty movements, so you are able to regain use of and maintain, a pain-free shoulder.
  • Physiotherapy – which can be self-directed or in a formal setting, depending on the patient’s wishes and abilities, should begin no later than two weeks after the injury [, ]. Initially, pendulum exercises will allow for a range of motion without placing weight-bearing stress on the fracture. After the patient is more comfortable, finger crawl exercises along a vertical surface can help with an overhead range of motion.

Medications

Medication can be prescribed to ease the pain.

Surgery 

  • Closed reduction with percutaneous pinning (CRPP)
  • Open reduction with internal fixation (ORIF)
  • Intramedullary rod fixation
  • Shoulder arthroplasty
  • Reverse shoulder arthroplasty

Suture Fixation

  • This technique has been described as a method to treat proximal humerus fractures and avoid the complications associated with implant placement and arthroplasty [, ]. Using this method, nonabsorbable sutures are passed through the rotator cuff tissue and/or the bone fragments, in order to obtain and maintain the reduction.
  • This technique avoids extensive soft tissue stripping and the risk of symptomatic implants. It also preserves the bone stock of the proximal humerus, which may allow for future procedures.

Plate Fixation

  • Operative fixation of the proximal humerus has evolved over the years. Development of locking technology, as well as a site-specific implant, has helped overcome some of the problems initially seen with operative fixation. Locking screws have improved the fixation of the head and soft metaphyseal, and often osteoporotic bone, frequently associated with these patients [rx].
  • The number of proximal screw options and trajectories attempts to maximize the fixation in the head of the humerus. Conventional plating may still be used in the case of a young patient with good bone quality, or for the treatment of simple two-part greater tuberosity fractures. Successful treatment with either plating technique relies on bone quality, as well as the accuracy of reduction and humeral head viability [, , , ].

Intramedullary nail

  • The use of an intramedullary device has been advocated by some as an alternative to plate and screw fixation []. This technique is thought to be less invasive to the surrounding soft tissues.
  • There has been concern regarding the disruption of the rotator cuff and injury to the footprint of the supraspinatus, but meticulous attention to dissection and repair of the supraspinatus tendon; establishing a starting point on the superior articular surface rather than the footprint of the tendon; and minimizing nail prominence, can decrease the chances of postoperative shoulder pain [, ].
  • Although the intramedullary nail fixation has been reported for two-part, three-part and fourpart proximal humerus fractures, currently the most appropriate patient is one that presents with a two-part surgical neck fracture [, ].

Surgical Approaches

  • The deltopectoral approach to the proximal humerus has been the most widely used approach for operative fixation of proximal humerus fractures. Alternative approaches have been used to allow for improved access and ease of implant positioning []. Both the superior subacromial approach and the extended anterolateral acromial approach use a deltoid-splitting interval while protecting the axillary nerve to access the fracture site. These approaches decrease the amount of soft tissue dissection and retraction that often necessary with a standard deltopectoral approach and improve access to the lateral and posterior regions of the proximal humerus.

Augmentation

  • Structural and biologic augmentations have been used in the treatment of proximal humerus fractures to improve the rate of healing and decrease the chance of displacement. The use of autograft, allograft, cement, or bone substitutes can help to fill voids in the metaphyseal area as well as provide structure or biologic support to the fracture [, ].
  • Endosteal fibular strut allografts have also been used to provide stability to the fracture especially in cases where there is a loss of the posterior medial calcar support and subsequent varus deformity [].

Arthroplasty

  • The role of arthroplasty for the treatment of proximal humerus fractures has fluctuated over time. Neer initially recommended the use of humeral head replacement for complex three-part and four-part fractures [].
  • Using conventional plating techniques, the incidence of nonunion and avascular necrosis of the humeral head was high for these types of injuries. But with the development of site-specific plates and locking plate technology, the fixation of proximal humerus fractures has improved and the role of arthroplasty for acute fractures has diminished.
  • Humeral head replacement may still have a role in fractures that are associated with multi fragmentary humeral head cleavage, un reconstructable humeral head, or humeral head devoid of any soft tissue rendering it avascular. Shoulder arthroplasty can also be used in the cases of delayed presentation or as a salvage procedure following failed operative fixation. The role of hemiarthroplasty in the elderly has also changed, as the functional results have been poorer than expected [].

Complications of Humerus Anatomical Neck Fracture

There are risks associated with any type of surgery. These include:

  • Nonunion (1-5%)
  • Infection (~4.8%)
  • Pneumothorax
  • Adhesive capsulitis
  • 4% in the surgical group develop adhesive capsulitis requiring surgical intervention
  • Bleeding
  • Problems with wound healing
  • Blood clots
  • Damage to blood vessels or nerves
  • Reaction to anesthesia
  • Hardware prominence
  • Malunion with cosmetic deformity
  • Restriction of ROM
  • The difficulty with bone healing
  • Lung injury
  • Hardware irritation
  • Fracture comminution (Z deformity)
  • Fracture displacement
  • Increased fatigue with overhead activities
  • Dissatisfaction with appearance
  • The difficulty with shoulder straps, backpacks and the like
  • ~30% of patient request plate removal
  • Superior plates associated with increased irritation
  • Superior plates associated with increased risk of subclavian artery or vein penetration.

References

Humerus Anatomical Neck Fracture

By

Proximal Forearm Fractures, Causes, Diagnosis, Treatment

Proximal Forearm Fractures/Proximal ulna fractures account for 20% of all proximal forearm fractures.[ There are many options available for the treatment of such fractures, such as cast immobilization, plate, and screw fixation, tension band wiring, and intramedullary screw fixation depending on the fracture pattern.[ Undisplaced proximal ulna fracture with intact extensor mechanism can be treated with cast immobilization, while simple transverse fractures are best treated via tension band wiring and intramedullary screw fixation. The use of plate and screw fixation is more appropriate in comminuted fractures of the proximal ulna. Due to the subcutaneous nature of the proximal forearm, it is vulnerable to open injuries over the dorsal aspect of the proximal ulna.

Proximal Forearm Fractures

Bones Of Upper Limb Anatomy and Arm Muscle And Bone Muscles Of The Pectoral Girdle And Upper Limbs – Human Diagram Chart

Classifications of Proximal Forearm Fractures

There are several classifications that describe different forms of olecranon fractures, yet none of them have gained widespread acceptance:[rx]

Mayo Classification

Based on the stability, the displacement and the comminution of the fracture. It is composed of three types, and each type is divided into two subtypes: subtype A (non-comminuted) and subtype B (comminuted).

  • Type I: Non-displaced fracture – It can be either non-comminuted ones (Type IA) or comminuted (Type IB).
  • Type II: Displaced, stable fractures – In this pattern, the proximal fracture fragment is displaced more than 3 mm, but the collateral ligaments are intact. That is why there is no elbow instability. It can be either non-comminuted ones (Type IIA) or comminuted (Type IIB).
  • Type III: Displaced unstable fracture – In this case, the fracture fragments are displaced and the forearm is unstable in relation to the humerus. It is a fracture -dislocation. It also may be either non-comminuted (Type IIIA) or comminuted (Type IIIB).

AO Classification

This classification incorporates all fractures of the proximal ulna and radius into one group, subdivided into three patterns:

  • Type A: Extra-articular fractures of the metadiaphysis of either the radius or the ulna
  • Type B: Intra-articular fractures of either the radius or ulna
  • Type C: Complex fractures of both the proximal radius and ulna

Colton Classification

  • Type I – Nondisplaced – Displacement does not increase with elbow flexion
  • Type II – Avulsion (displaced)
  • Type III – Oblique and Transverse (displaced)
  • Type IV – Comminuted (displaced)
  • Type V – Fracture dislocation

Schatzker Classification

  • Type A – Simple transverse fracture
  • Type B – Transverse impacted fracture
  • Type C – Oblique fracture
  • Type D – Comminuted fracture
  • Type E – More distal fracture, extra-articular
  • Type F – Fracture-dislocation

Proximal Forearm Fractures

Mechanism of Proximal Forearm Fractures

Olecranon fractures are common. Typically they are caused by direct blows to the elbow (e.g. motor vehicle accidents), and due to falls when the triceps are contracted.[rx][rx] “Side-swipe” injury when driving a motor vehicle with an elbow projecting outside the vehicle resting on an open window’s edge is an example.[rx]

Direct trauma – This can happen in a fall with landing on the elbow or by being hit by a solid object. Trauma to the elbow often results in comminuted fractures of the olecranon.

Indirect trauma – by falling and landing with an outstretched arm.

Powerful pull of the triceps muscle can also cause avulsion fractures.

Causes of Proximal Forearm Fractures

Proximal Forearm Fractures

  • Sudden forceful  fall down
  • Road traffic accident
  • Falls – Falling onto an outstretched hand is one of the most common causes of broken proximal ulna fractures.
  • Sports injuries – Many wrist fractures occur during contact sports or sports in which you might fall onto an outstretched hand — such as in-line skating or snowboarding.
  • Motor vehicle crashes – Motor vehicle crashes can cause wrist bones to break, sometimes into many pieces, and often require surgical repair.
  • Have osteoporosis – a disease that weakens your bones
  • Eave low muscle mass or poor muscle strength – or lack agility and have poor balance (these conditions make you more likely to fall)
  • Walk or do other activities in snow or on the ice –  or do activities that require a lot of forwarding momenta, such as in-line skating and skiing
  • Wave an inadequate intake of calcium or vitamin D
  • Football or soccer, especially on artificial turf
  • Rugby
  • Horseback riding
  • Hockey
  • Skiing
  • Snowboarding
  • In-line skating
  • Jumping on a trampoline

Symptoms of Proximal Forearm Fractures

People with olecranon fractures present with intense elbow pain after a direct blow or fall.[rx] Swelling over the bone site is seen and an inability to straighten the elbow is common. Due to the proximity of the olecranon to the ulnar nerve, the injury and swelling may cause numbness and tingle at the fourth and fifth fingers.[rx] The examination can bring out a palpable defect at the site of the fracture.[rx]

  • Severe pain that might worsen when gripping or squeezing or moving your hand or wrist
  • Swelling
  • Tenderness
  • Bruising
  • Obvious deformity, such as a bent wrist
  • Pain
  • Bruising
  • Tenderness
  • The wrist hanging in a deformed way
  • Pain, especially when flexing the ulnar styloid fracture

Diagnosis of Proximal Forearm Fractures

Diagnosis can be made upon the interpretation of anteroposterior and lateral views alone.[rx]

The classic proximal ulna fractures have the following characteristics:[rx]

  • Transverse fracture of the ulnar
  • dorsal displacement and dorsal angulation, together with radial tilt[rx]

Other characteristics[rx][rx]

  • Radial-ulnar styloid fracture shortening
  • Loss of ulnar inclination≤
  • Radial angulation of the wrist
  • Comminution at the fracture site
  • Associated fracture of the ulnar styloid process in more than 60% of cases.

Differential Diagnosis/ Associated Injuries

  • Scapholunate ligament tear
  • Median nerve injury
  • TFCC (triangular fibrocartilage complex) injury, up to 50% when ulnar styloid fx also present
  • Carpal ligament injury – Scapholunate Instability(most common), lunotriquetral ligament
  • Tendon injury, attritional EPL rupture, usually treated with EIP tendon transfer
  • Compartment syndrome
  • Ulnar styloid fracture
  • DRUJ (Distal Radial Ulnar Joint) Instability
  • Galeazzi Fracture: highly associated with distal 1/3 radial shaft fractures[rx]

Plain radiographs

  • Radiographic imaging is important in diagnosis, classification, treatment and follow-up assessment of these fractures. The routine minimal evaluation for proximal ulna fractures must include two views-a postero-anterior (PA) view and lateral view.[]
  • The PA view should be obtained with the humerus abducted 90 degrees from the chest wall, so that the elbow is at the same level as the shoulder and flexed 90 degrees.[] The palm is maintained flat against the cassette

Computed Tomography

  • CT may be useful and can give significant information in comparison with that obtained with conventional radiography in the evaluation of complex or occult fractures, distal radial articular surface, distal radio-ulnar joint, ventromedial fracture fragment,[] assessments of fracture healing as well as post-surgical evaluation.[]
  • CT may be indicated for the confirmation of occult fractures suspected on the basis of physical examination when plain films are normal.

Magnetic Resonance Imaging

  • Although this modality is not the first choice in evaluating acute distal radius fractures, it is a powerful diagnostic tool to assess bony, ligamentous and soft tissue abnormalities associated with these fractures.
  • MRI has proved to be a very important diagnostic tool for delineating perforation of triangular fibrocartilage complex (TFCC),[] perforation of interosseous ligaments of the proximal carpal row, evaluating occult fractures, post-traumatic or avascular necrosis of carpal bones.

Treatment of Proximal Forearm FracturesProximal Forearm Fractures

Treatment available can be broadly

  • Get medical help immediately – If you fall on an outstretched arm, get into a car accident or are hit while playing a sport and feel intense pain in your shoulder area, then get medical care immediately. Proximal ulna fractures cause significant pain in the front part of your shoulder, closer to the base of your neck. You’ll innately know that something is seriously wrong because you won’t be able to lift your arm up. Other symptoms include immediate swelling and/or bruising near the fracture, grinding sounds with arm movements and potential numbness and tingling in the arm/hand.
  • Apply ice to your fractured clavicle – After you get home from the hospital proximal ulna fractures (regardless if you had surgery or not), you should apply a bag of crushed ice (or something cold) to your injured in order to reduce the swelling and numb the pain. Ice therapy is effective for acute (recent) injuries that involve swelling because it reduces blood flow by constricting local blood vessels. Apply the crushed ice to your clavicle for 15 minutes three to five times daily until the soreness and inflammation eventually fades away
    Lightly exercise after the pain fades – After a couple of weeks when the swelling has subsided and the pain has faded away, remove your arm sling for short periods and carefully move your arm and shoulder in all different directions. Don’t aggravate the proximal ulna fractures so that it hurts, but gently reintroduce movements to the involved joints and muscles. Start cautiously, maybe starting with light calisthenics and then progress to holding light weights (five-pound weights to start). Your proximal ulna fractures need to move a little bit during the later phases of the injury to stimulate complete recovery.
  • Practice stretching and strengthening exercises – of the fingers, elbow, and shoulder if your doctor recommends them.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for six to eight weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)
  • Get a supportive arm sling – Due to their anatomical position, proximal ulna fractures can’t be cast like a broken limb can. Instead, a supportive arm sling or “figure-eight” splint is typically used for support and comfort, either immediately after the injury if it’s just a hairline fracture or following surgery, if it’s a complicated fracture. A figure-eight splint wraps around both shoulders and the base of your neck in order to support the injured shoulder and keep it positioned up and back. Sometimes a larger swath of material is wrapped around the sling to keep it closer to your body. You’ll need to wear the sling constantly until there is no pain with arm movements, which takes between two to four weeks for children or four to eight weeks for adults.
  • Get a referral to physical therapy – Once you’ve recovered and able to remove your arm sling splint for good, you’ll likely notice that the muscles surrounding your shoulder and upper chest look smaller and feel weaker. That’s because muscle tissue atrophies without movement. If this occurs, then you’ll need to get a referral for some physical rehabilitation. Rehab can start once you are cleared by your orthopedist, are pain-free, and can perform all the basic arm and shoulder movements. A physiotherapist or athletic trainer can show you specific rehabilitation exercises and stretches to restore your muscle strength, joint movements and flexibility
  • Rigid fixation – osteosynthesis with locking plate, hook plate fixation, fixation with a distal radius locking plate, coracoclavicular screws, Knowles pin fixation.
  • Flexible fixation – simple k wire fixation, tension band wiring, suture anchors, vicryl tape, dacron arterial graft for coracoclavicular ligament reconstruction.

Rest your Hand

Once you’re discharged from the hospital in an arm sling, your top priority is to rest your shoulder and not further inflame the injury. Of course, the arm sling not only provides support, but it also restricts movement, which is why you should keep it on even during sleep. Avoiding the temptation to move your shoulder and arm will help the bone mend quicker and the pain fades away sooner.
  • Depending on what you do for a living and if the injury is to your dominant side, you may need to take a couple of weeks off work to recuperate.
  • Healing takes between four to six weeks in younger people and up to 12 weeks in the elderly, but it depends on the severity of the fractured clavicle.
  • Athletes in good health are typically able to resume their sporting activities within two months of breaking they’re ulnar styloid depending on the severity of the break and the specific sport.
  • Sleeping on your back (with the sling on) is necessary to keep the pressure off your shoulder and prevent stressing the clavicle injury.

Eat nutritiously during your recovery

All bones and tissues in the body need certain nutrients in order to heal properly and in a timely manner. Eating a nutritious and balanced diet that includes lots of minerals and vitamins is proven to help heal broken bones of all types, including ulnar styloid. Therefore, focus on eating lots of fresh produce (fruits and veggies), whole grains, lean meats, and fish to give your body the building blocks needed to properly repair your clavicle. In addition, drink plenty of purified water, milk, and other dairy-based beverages to augment what you eat.

  • Broken bones need ample minerals (calcium, phosphorus, magnesium, boron) and protein to become strong and healthy again.
  • Excellent sources of minerals/protein include dairy products, tofu, beans, broccoli, nuts and seeds, sardines and salmon.
  • Important vitamins that are needed for bone healing include vitamin C (needed to make collagen), vitamin D (crucial for mineral absorption), and vitamin K (binds calcium to bones and triggers collagen formation).
  • Conversely, don’t consume food or drink that is known to impair bone/tissue healing, such as alcoholic beverages, sodas, most fast food items and foods made with lots of refined sugars and preservatives.

Physical therapy

  • Although there will be some pain, it is important to maintain arm motion to prevent stiffness. Often, patients will begin doing exercises for elbow motion immediately after the injury.  After a proximal ulna fracture, it is common to lose some shoulder and arm strength. Once the bone begins to heal, your pain will decrease and your doctor may start gentle shoulder exercises. These exercises will help prevent stiffness and weakness. More strenuous exercises will be started gradually once the fracture is completely healed.

Follow-up care

  • You will need to see your doctor regularly until your fracture heals. During these visits, he or will take x-rays to make sure the bone is healing in a good position. After the bone has healed, you will be able to gradually return to your normal activities.

Breathing Exercise

  • To elevate breathing problem or remove the lung congestion.

Proximal Forearm Fractures

Medications

Medication can be prescribed to ease the pain. 

Surgery

Fracture (left) and repair (right) with three pins, wires, and incision closure with staples

Nondisplaced Fractures

  • In fractures with little or no displacement, immobilization with a posterior splint may be sufficient.[rx] Elbows be immobilized at 45-90º of flexion for 3 weeks, followed by limited (90º) flexion exercises.

Displaced Fractures

  • Most olecranon fractures are displaced and are best treated surgically:

Tension Band Fixation

  • Tension band fixation is the most common form of internal fixation used for non-comminuted olecranon fractures.[rx] It is typically reserved for noncomminuted fractures that are proximal to the coronoid.[rx] This procedure is performed using Kirschner wire (K-wires) which converts tensile forces into compressive force.[rx]

Intramedullary Fixation and Plates

  • Single intramedullary screws can be used to treat simple transverse or oblique fractures.[rx] Plates can be used for all proximal ulna fracture types including Monteggia fractures, and comminuted fractures.[rx]

Excision and triceps advancement

  • This method is indicated for cases when open reduction and internal fixation is unlikely to be successful. For example: extensive comminutions, elderly patients with osteoporotic bone, and small or non-union fractures.[rx][rx]

Open reduction and internal fixation. This is the procedure most often used to treat ulnar styloid fracture fractures. During the procedure, the bone fragments are first repositioned (reduced) into their normal alignment. The pieces of bone are then held in place with special metal hardware.

Common methods of internal fixation include:

  • Plates and screws – After being repositioned into their normal alignment, the bone fragments are held in place with special screws and metal plates attached to the outer surface of the bone. After surgery, you may notice a small patch of numb skin below the incision. This numbness will become less noticeable with time. Because the clavicle lies directly under the skin, you may be able to feel the plate through your skin.
  • Pins or screws –  Pins or screws can also be used to hold the fracture in good position after the bone ends have been put back in place. The incisions for pin or screw placement are usually smaller than those used for plates.
    Pins or screws often irritate the skin where they have been inserted and are usually removed once the fracture has healed.
  • Precontoured locking plates
  • Hook plate
  • Distal radius plates
  • Ulnar styloid fracture screws
  • Flexible coracoclavicular fixation
  • Arthroscopic treatment
  • Intra-medullary fixation
  • Tension band fixation

Closed Reduction and Casting

  • All fractures characterized by minor comminution, without or with minimal displacements can be considered for closed reduction and cast immobilization. Mainly type I and type IIA Melone’s fracture can be managed conservatively. The fracture should be kept under closed observation to look for any re-displacement.
  • Despite the widespread acceptance of immobilization in a plaster cast, questions remain regarding the optimum position, the duration of immobilization and the need to extend the cast proximal to the ulna. No clear consensus exists as to the best position for immobilizing the wrist in plaster. Sarmiento et al.[] advocated immobilization in a position of supination to decrease the deforming force of the brachioradialis, which may cause loss of reduction.

Pins and Plaster Technique

  • Placement of pins in the metacarpals and forearm was initially advocated by Bohler in 1923, but it gained popularity after the report by Green, who showed good or excellent results in 86% of his patients.[]
  • However, he noted a high incidence of minor or major complications, one-third of which were related to pin site only. Other researchers also noted that one-third of the complications were related to pins and 16% of the patients needed reoperation for complications.[]

Percutaneous Pinning

  • Extra-articular fractures of the distal end of the ulna with extensive comminution or the fractures that have no more than two articular fragments, in which anatomical reduction is obtainable, are amenable to percutaneous pinning of the fracture fragments and application of a plaster cast. A single pin placed through the radial styloid as a means of stabilizing the displaced fracture fragment was first suggested by Lambotte in 1908.[,]

External Fixation

  • External fixation is generally accepted as superior to plaster immobilization in the young patients with an intra-articular comminuted fracture of the distal radius. Other indications for external fixation include some unstable extra-articular fractures with significant comminution and failure to maintain reduction after an initial attempt at closed management in a cast, certain situations of multiple trauma, the presence of dysfunctional contralateral limb, severe open fractures with significant soft tissue injury and neurovascular compromise, and bilateral injuries.[]

Limited Open Reduction

  • In intra-articular fractures that have more than 2 mm of displacement, the radio-carpal joint may be incongruent despite adequate attempts at reduction. The incongruency usually involves the lunate part of the distal end of the radius.
  • The ulna styloid process and scaphoid facet are more amenable to reduction through ligamentotaxis or by manipulation and reduction.
  • A new technique of combining external fixation with open reduction of the displaced lunate fossa through a small, longitudinal incision and elevation of the impacted fragment without direct visualization of the surface of the joint has been described.[]

Open Reduction and Internal Fixation

  • One of the recent advances in the treatment of distal ulna fractures is the more frequent application of open reduction and internal fixation, especially for intra-articular fractures. There are two groups of fractures for which open reduction and internal fixation is advisable.

Arthroscopic-Assisted Fracture Reduction

  • Intra-articular fractures of the radius can be arthroscopically assessed, and reduction of the particular components and assessment and repair of ligamentous injury can then be undertaken.[,,] The ideal timing for arthroscopically assisted distal radius surgery is 3 to 7 days after injury.

I. Non-operative methods of treating radial head fractures

A. Immediate mobilization vs. cast in flexion vs. cast in extension

  • One randomized controlled trial (CoE level II) was identified that compared patients treated with immediate mobilization with immobilization.
  • The least pain and loss of elbow extension were seen in people treated with immobilization, but these differences were not statistically significant.
  • Comparisons between treatments may be limited by small sample sizes and study biases.

B. Aspiration of the elbow versus no aspiration

  • One randomized controlled trial (CoE level II) was identified that compared patients with radial head fractures treated with elbow aspiration versus those who were not treated with aspiration.
  • Ninety-two percent of the patients who received aspiration reported immediate and lasting relief from pain following the treatment.

II. Non-operative versus operative methods

A. Closed reduction versus ORIF in children

  • One retrospective cohort study on children was identified that compared closed reduction versus open reduction for radial neck fractures.
  • Compared with children treated with open reduction and internal fixation, those treated with immobilization/closed reduction experienced significantly less pain (15% versus 65%; RR=0.2, 95% CI, 0.1–0.4), avascular necrosis (4% versus 24%; RR = 0.2, 95% CI, 0.05–0.6), and had more good or excellent overall clinical results (99% versus 55%); RR = 1.8, 95% CI, 1.3–2.5).

B. Closed reduction versus ORIF in adults

  • One retrospective cohort study in adults was identified that compared closed versus open reduction for radial head fractures.
  • Patients who received closed reduction were more likely to report pain than those treated with open reduction, but this was not statistically significant (RR = 2.0, 95% CI, 0.9–4.5).
  • Patients treated with open reduction were more likely to have had a good or excellent clinical result (90%) than patients treated with closed reduction (46%), but, again, these were not statistically significantly different.

III. Operative methods of reducing olecranon fractures

A. Tension band wiring versus plate fixation

  • One randomized controlled trial was identified that compared tension band wiring with plate fixation as treatment of olecranon fractures.
  • Plate fixation resulted in higher percentage of “good” clinical (no more than occasional pain; loss of movement in elbow less than 15°) and x-ray (no articular step-off or gap; no loss of reduction) results.
  • Many more tension band wiring patients reported complications (74%) compared with patients who received plate fixation (5%), a statistically significant difference (RR= 16.2, 95% CI, 2.3–112). To prevent one complication, one to 2 patients would need to be treated with plate fixation
  • Results may be limited by small sample size.

B. Netz pins versus Kirschner pins

  • One randomized controlled trial was identified that compared Netz pins with Kirschner pins as treatment of olecranon fractures.
  • Median fracture healing time was similar for both groups (six weeks for Netz pins versus seven weeks for Kirschner pins).
  • More Kirschner (68%) than Netz (52%) pins had to be removed by the end of follow-up, but this difference was not statistically significant.

C. Tension band wiring versus figure of eight wiring

  • One study was found that compared tension band wiring with figure of eight wiring to treat olecranon fractures.
  • No statistically or clinically significant differences were found between the two treatment groups in terms of pain, loss of strength, range of motion, or osteoarthritis.
  • Patients in the tension band wiring group (81%) experienced significantly more hardware removal than those in the figure of eight wiring group (43%); RR = 1.9, 95% CI, 1.3–1.9)).

IV. Operative versus operative methods for radial head fractures

A. Resection versus open reduction and fixation

  • One retrospective cohort study was identified that compared resection versus open reduction and internal fixation.
  • Patients who received open reduction and internal fixation reported less pain (P = .02) and greater functional recovery (P = .003) than those who received resection.

B. Primary radial head excision versus delayed excision

  • One retrospective cohort study was identified that compared primary versus delayed excision as treatment of radial head fractures.
  • No difference was found between immediate (10%) and delayed (11%) treatment in terms of daily pain (RR = 0.9, 95% CI, 0.2–4.6).

C. Biodegradable polylactide pins versus standard metal mini-fragment implants

  • One randomized controlled trial (CoE II) was identified that compared the use of polylactide pins with standard metal mini-fragment implants for treatment of displaced radial head fractures.
  • No difference in postsurgical complications or in clinician-based outcomes at the two year follow-up was found between the use of biodegradable pins or standard metal lag screws.
  • At two years follow-up, a five times greater risk for osteoloysis was seen in polylactide patients (17%) compared with patients treated using standard metal devices (3%) (RR = 5.4, 95% CI, 1.3–23, NNT = 21). Of patients who developed osteolysis, the osteolysis was mild or moderate in eleven (92%) of those with polylactide pins and one of the two patients with metal devices.

V. Rehabilitation following radial head fractures

  • One study was identified that compared immediate to delayed mobilization for rehabilitation following radial head fractures.
  • No statistically or clinically significant differences were found between pain or range of motion scores at week twelve.
  • In olecranon fractures, osteoarthritis of the elbow joint, occurring after about 5% of these fractures, and the necessity of a second operation to remove hardware, required in 56-85% of olecranon fractures, are two common complications that result from operative treatments.
  • The most common complication of radial head fractures is a loss of joint motion as a result of avascular necrosis, which occurs in 10–20% of radial head fractures. No studies comparing prognosis were identified for radial head fractures.
  • Complications of treated Monteggia fractures include recurrent radial head dislocation, malunion, posterior interosseous nerve palsy, and Volkmann’s ischemic contracture. No comparative studies were found on prognosis following Monteggia fractures.

Overall, the quality of evidence on proximal forearm fractures is limited, and definitive statements regarding treatment are not possible. However, the following observations may be helpful:

  • Aspiration of radial head fractures consistently relieved pain.
  • Studies comparing operative to non-operative methods of treating proximal forearm fractures suggest non-operative methods may be better than operative methods in terms of pain, avascular necrosis, and clinical outcomes for radial neck fractures in children. However, in adults, operative methods had better results in terms of pain and clinical results.
  • Tension band wiring, compared with plate fixation, may result in more complications when used as a treatment for olecranon fractures.
  • Tension band wiring of forearm fractures also resulted in greater rates of hardware removal when compared with a figure of eight wiring.
  • Open reduction and internal fixation of radial head fractures seems to have better results than resection
  • Biodegradable pins or standard metal screws for ORIF may result in comparable outcomes but there may be a greater risk of developing a mild degree of osteolysis.

Rehabilitation Guideline for Non-Operative/Conservative rehabilitation [rx]

Acute Stage (0-8 weeks)

Goals

  • Protection with short-arm cast
  • Control pain and edema
  • Maintain range in digits, elbows, shoulder

Interventions

  • AROM and PROM of digits, elbow, shoulder
  • Elevation of hand and digits to control edema
  • Cast removal between 6-8 weeks

Sub Acute Stage

Goal

  • Control pain and edema (TENS, ice)
  • Increase ROM
  • Increase activities of daily living (ADLs)

Interventions

  • AROM and PROM of digits, elbow, shoulder
  • AROM wrist flexion/ extension, forearm supination/ pronation
  • PROM of low load and prolonged stretch

Settled Stage

Goals

  • Regain full ROM
  • Begin strengthening
  • Return to activity

Interventions

  • Continue all ROM exercises
  • Progress to the strengthening of all joints[rx]

Rehabilitation Guideline for External Fixation by Pho et al

Acute Stage (1-6 weeks)

Goals

  • Control pain and edema (TENS, ice)
  • Protect surgical site
  • Maintain ROM of digits, elbow, shoulder

Interventions

  • Elevation
  • AROM of digits, elbow, shoulder
  • AROM forearm supination/ pronation

Sub Acute (7-10 weeks)

Goal

  • Protect fracture site
  • Control pain and edema (TENS, ice)
  • ROM of involved and uninvolved joints

Interventions

  • AROM and PROM of wrist extension/ flexion, radial deviation, and supination/ pronation

Settled Stage (10-16 weeks)

Goal

  • Regain full ROM
  • Begin strengthening
  • Increase tolerance to ADLs

Interventions

  • ROM of wrist flexion/ extension, radial/ ulnar deviation, forearm supination/ pronation progressing to isometric exercises and resisted exercises using dumbbells or resistive bands
  • PROM of low load and prolonged stretching of wrist motions
  • Grip strengthening
  • ADL training within tolerance[rx]

Cryotherapy

  • Cryotherapy is an effective modality for controlling edema in the acute phase after trauma and during rehab due to its ability in helping to decrease blood flow through vasoconstriction limiting the amount of fluid escaping from capillaries to the interstitial fluid[rx]. Cryotherapy can also be combined with compression and elevation in the treatment of edema.[rx]
  • To control pain using cryotherapy, the modality should be applied to the area for 10-15 minutes which can result in pain control up to 2 hours post application.[rx]Precautions for the use of cryotherapy include: over a superficial branch of the nerve, over an open wound, poor sensation or mentation, and very young or very old patients.[rx] Contraindications for cryotherapy include; Acute febrile illness, Vasospasm e.g. Raynaud’s disease, Cryoglobulinemia, Cold urticaria.[rx]

Electrical Stimulation

  • The use of transcutaneous electrical nerve stimulation (TENS) may be used as an adjunct during any phase of rehab to address pain but can be particularly useful for patients that are increasing the level of activity of the wrist. Conventional (high-rate) TENS is useful for disrupting the pain cycle through a prolonged treatment session as great as 24 hours a day.[rx]
  • Low-rate TENS is another form of electrical stimulation that is successful in diminishing pain by targeting motor or nociceptive A-delta nerves. Low-rate TENS has been reported to be effective in pain control for up to 4-5 hours post-treatment.[rx]
  • The literature is still not conclusive on this topic and the results of one study may contradict or, on the contrary, reinforce the results of another study. Yet there is evidence supporting the beneficial effects of electrical stimulation, especially in combination with physiotherapy exercises.

Supervised Active rehabilitation program used in Study

ISOMETRIC EXERCISE

  • Wrist flexors and extensors

ACTIVE RANGE OF MOTION EXERCISE

  • Assisted stretch to forearm flexors and extensor musculature and radial/ulnar deviation
  • Weight-bearing wrist extension exercise(hand on the table with the patient leaning forward on them) to patient tolerance
  • Active stretch to shoulder girdle and rotator cuff musculature
  • Active stretch to elbow flexor and extensor musculature

INTRINSIC HAND MUSCLE EXERCISE

  • Thumb/digit opposition
  • Repetitive squeezing of therapy
  • repetitive towel wringing exercise

STRENGTHENING ROUTINE

  • Biceps curl with 1,5-2 pound weights bilaterally
  • Shoulder abduction, flexion and extension reps with 2-pound weights bilaterally
  • Repetitive squeezing of a rubber ball in affected wrist
  • Flexion and extension of wrist using 1,5-pound weights increasing as tolerated

FUNCTIONAL ACTIVITIES

  • The patient is encouraged to resume pre-accident activities that involve the affected extremity (eg. writing, typing, cooking, etc.)

Complications of Proximal Forearm Fractures

There were no major complications such as neurovascular injury, infection, or impaired wound healing. Surgery-related complication at 2-year follow-up included nonunion in 3 patients (11%),

  • DRUJ subluxation in 3 patients (11%),
  • Implant migration in 4 patients (14%),
  • Radiographic resorption of the ulnar styloid in 4 patients (14%).
  • Radiographic nonunion was noted in 1 patient in group A (8%) and 2 in group B (13%). Residual DRUJ subluxation was noted in 3 patients; all were in group B (20%).
  • Partial or complete radiographic resorption of the ulna was found in 1 patient in group A (8%) and 3 in group B (20%).
  • Implant migration was noted in 1 patient in group A (8%), and 2 in group B (13%).
  • Subsequent removal surgery due to implant irritation occurred in 13 patients (46%), with 4 in group A (31%) and 8 in group B (53%).
  • A total of 11 patients (39%) with surgery-related complications included 5 (38%) in group A and 12 (80%) in group B, with a significant difference

There are risks associated with any type of surgery. These include

  • Nonunion (1-5%)
  • Infection (~4.8%)
  • 4% in the surgical group develop adhesive capsulitis requiring surgical intervention
  • Bleeding
  • Problems with wound healing
  • Blood clots
  • Damage to blood vessels or nerves
  • Reaction to anesthesia
  • Hardware prominence
  • Malunion with cosmetic deformity
  • Restriction of ROM
  • The difficulty with bone healing
  • Hardware irritation
  • Fracture comminution (Z deformity)
  • Fracture displacement
  • Increased fatigue with overhead activities
  • Dissatisfaction with appearance
  • The difficulty with shoulder straps, backpacks and the like
  • ~30% of patient request plate removal
  • Superior plates associated with increased irritation
  • Superior plates associated with increased risk of subclavian artery or vein penetration

References

Proximal Forearm Fractures

By

Olecranon Fracture; Causes, Diagnosis, Treatment

Olecranon Fracture/Proximal ulna fractures account for 20% of all proximal forearm fractures.[ There are many options available for the treatment of such fractures, such as cast immobilization, plate, and screw fixation, tension band wiring and intramedullary screw fixation, depending on the fracture pattern.[ Undisplaced proximal ulna fracture with intact extensor mechanism can be treated with cast immobilization, while simple transverse fractures are best treated via tension band wiring and intramedullary screw fixation. The use of plate and screw fixation is more appropriate in comminuted fractures of the proximal ulna. Due to the subcutaneous nature of the proximal forearm, it is vulnerable to open injuries over the dorsal aspect of the proximal ulna.

Bones Of Upper Limb Anatomy and Arm Muscle And Bone Muscles Of The Pectoral Girdle And Upper Limbs – Human Diagram Chart

 

Classifications of Olecranon Fracture

There are several classifications that describe different forms of olecranon fractures, yet none of them have gained widespread acceptance:[rx]

Mayo Classification

Based on the stability, the displacement and the comminution of the fracture. It is composed of three types, and each type is divided into two subtypes: subtype A (non-comminuted) and subtype B (comminuted).

  • Type I: Non-displaced fracture – It can be either non-comminuted ones (Type IA) or comminuted (Type IB).
  • Type II: Displaced, stable fractures – In this pattern, the proximal fracture fragment is displaced more than 3 mm, but the collateral ligaments are intact. That is why there is no elbow instability. It can be either non-comminuted ones (Type IIA) or comminuted (Type IIB).
  • Type III: Displaced unstable fracture – In this case, the fracture fragments are displaced and the forearm is unstable in relation to the humerus. It is a fracture -dislocation. It also may be either non-comminuted (Type IIIA) or comminuted (Type IIIB).

AO Classification

This classification incorporates all fractures of the proximal ulna and radius into one group, subdivided into three patterns:

  • Type A: Extra-articular fractures of the metadiaphysis of either the radius or the ulna
  • Type B: Intra-articular fractures of either the radius or ulna
  • Type C: Complex fractures of both the proximal radius and ulna

Colton Classification

  • Type I – Nondisplaced – Displacement does not increase with elbow flexion
  • Type II – Avulsion (displaced)
  • Type III – Oblique and Transverse (displaced)
  • Type IV – Comminuted (displaced)
  • Type V – Fracture dislocation

Schatzker Classification

  • Type A – Simple transverse fracture
  • Type B – Transverse impacted fracture
  • Type C – Oblique fracture
  • Type D – Comminuted fracture
  • Type E – More distal fracture, extra-articular
  • Type F – Fracture-dislocation

Mechanism of Olecranon Fracture

Olecranon fractures are common. Typically they are caused by direct blows to the elbow (e.g. motor vehicle accidents), and due to falls when the triceps are contracted.[rx][rx] “Side-swipe” injury when driving a motor vehicle with an elbow projecting outside the vehicle resting on an open window’s edge is an example.[rx]

Direct trauma – This can happen in a fall with landing on the elbow or by being hit by a solid object. Trauma to the elbow often results in comminuted fractures of the olecranon.

Indirect trauma – by falling and landing with an outstretched arm.

Powerful pull of the triceps muscle can also cause avulsion fractures.

Causes of Ulna Neck Fracture

Olecranon Fracture

 

  • Sudden forceful  fall down
  • Road traffic accident
  • Falls – Falling onto an outstretched hand is one of the most common causes of broken proximal ulna fractures.
  • Sports injuries – Many wrist fractures occur during contact sports or sports in which you might fall onto an outstretched hand — such as in-line skating or snowboarding.
  • Motor vehicle crashes – Motor vehicle crashes can cause wrist bones to break, sometimes into many pieces, and often require surgical repair.
  • Have osteoporosis – a disease that weakens your bones
  • Eave low muscle mass or poor muscle strength – or lack agility and have poor balance (these conditions make you more likely to fall)
  • Walk or do other activities in snow or on the ice –  or do activities that require a lot of forwarding momenta, such as in-line skating and skiing
  • Wave an inadequate intake of calcium or vitamin D
  • Football or soccer, especially on artificial turf
  • Rugby
  • Horseback riding
  • Hockey
  • Skiing
  • Snowboarding
  • In-line skating
  • Jumping on a trampoline

Symptoms of Olecranon Fracture

People with olecranon fractures present with intense elbow pain after a direct blow or fall.[rx] Swelling over the bone site is seen and an inability to straighten the elbow is common. Due to the proximity of the olecranon to the ulnar nerve, the injury and swelling may cause numbness and tingle at the fourth and fifth fingers.[rx] The examination can bring out a palpable defect at the site of the fracture.[rx]

  • Severe pain that might worsen when gripping or squeezing or moving your hand or wrist
  • Swelling
  • Tenderness
  • Bruising
  • Obvious deformity, such as a bent wrist
  • Pain
  • Bruising
  • Tenderness
  • The wrist hanging in a deformed way
  • Pain, especially when flexing the ulnar styloid fracture

Diagnosis of Olecranon Fracture

Diagnosis can be made upon the interpretation of anteroposterior and lateral views alone.[rx]

The classic proximal ulna fractures have the following characteristics:[rx]

  • Transverse fracture of the ulnar
  • dorsal displacement and dorsal angulation, together with radial tilt[rx]

Other characteristics[rx][rx]

  • Radial-ulnar styloid fracture shortening
  • Loss of ulnar inclination≤
  • Radial angulation of the wrist
  • Comminution at the fracture site
  • Associated fracture of the ulnar styloid process in more than 60% of cases.

Differential Diagnosis/ Associated Injuries

  • Scapholunate ligament tear
  • Median nerve injury
  • TFCC (triangular fibrocartilage complex) injury, up to 50% when ulnar styloid fx also present
  • Carpal ligament injury – Scapholunate Instability(most common), lunotriquetral ligament
  • Tendon injury, attritional EPL rupture, usually treated with EIP tendon transfer
  • Compartment syndrome
  • Ulnar styloid fracture
  • DRUJ (Distal Radial Ulnar Joint) Instability
  • Galeazzi Fracture: highly associated with distal 1/3 radial shaft fractures[rx]

Plain radiographs

  • Radiographic imaging is important in diagnosis, classification, treatment and follow-up assessment of these fractures. The routine minimal evaluation for proximal ulna fractures must include two views-a postero-anterior (PA) view and lateral view.[]
  • The PA view should be obtained with the humerus abducted 90 degrees from the chest wall, so that the elbow is at the same level as the shoulder and flexed 90 degrees.[] The palm is maintained flat against the cassette

Computed Tomography

  • CT may be useful and can give significant information in comparison with that obtained with conventional radiography in the evaluation of complex or occult fractures, distal radial articular surface, distal radio-ulnar joint, ventromedial fracture fragment,[] assessments of fracture healing as well as post-surgical evaluation.[]
  • CT may be indicated for the confirmation of occult fractures suspected on the basis of physical examination when plain films are normal.

Magnetic Resonance Imaging

  • Although this modality is not the first choice in evaluating acute distal radius fractures, it is a powerful diagnostic tool to assess bony, ligamentous and soft tissue abnormalities associated with these fractures.
  • MRI has proved to be a very important diagnostic tool for delineating perforation of triangular fibrocartilage complex (TFCC),[] perforation of interosseous ligaments of the proximal carpal row, evaluating occult fractures, post-traumatic or avascular necrosis of carpal bones.

Treatment of Olecranon FractureUlna Neck Fracture

Treatment available can be broadly

  • Get medical help immediately – If you fall on an outstretched arm, get into a car accident or are hit while playing a sport and feel intense pain in your shoulder area, then get medical care immediately. Proximal ulna fractures cause significant pain in the front part of your shoulder, closer to the base of your neck. You’ll innately know that something is seriously wrong because you won’t be able to lift your arm up. Other symptoms include immediate swelling and/or bruising near the fracture, grinding sounds with arm movements and potential numbness and tingling in the arm/hand.
  • Apply ice to your fractured clavicle – After you get home from the hospital proximal ulna fractures (regardless if you had surgery or not), you should apply a bag of crushed ice (or something cold) to your injured in order to reduce the swelling and numb the pain. Ice therapy is effective for acute (recent) injuries that involve swelling because it reduces blood flow by constricting local blood vessels. Apply the crushed ice to your clavicle for 15 minutes three to five times daily until the soreness and inflammation eventually fades away
    Lightly exercise after the pain fades – After a couple of weeks when the swelling has subsided and the pain has faded away, remove your arm sling for short periods and carefully move your arm and shoulder in all different directions. Don’t aggravate the proximal ulna fractures so that it hurts, but gently reintroduce movements to the involved joints and muscles. Start cautiously, maybe starting with light calisthenics and then progress to holding light weights (five-pound weights to start). Your proximal ulna fractures need to move a little bit during the later phases of the injury to stimulate complete recovery.
  • Practice stretching and strengthening exercises – of the fingers, elbow, and shoulder if your doctor recommends them.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for six to eight weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)
  • Get a supportive arm sling – Due to their anatomical position, proximal ulna fractures can’t be cast like a broken limb can. Instead, a supportive arm sling or “figure-eight” splint is typically used for support and comfort, either immediately after the injury if it’s just a hairline fracture or following surgery, if it’s a complicated fracture. A figure-eight splint wraps around both shoulders and the base of your neck in order to support the injured shoulder and keep it positioned up and back. Sometimes a larger swath of material is wrapped around the sling to keep it closer to your body. You’ll need to wear the sling constantly until there is no pain with arm movements, which takes between two to four weeks for children or four to eight weeks for adults.
  • Get a referral to physical therapy – Once you’ve recovered and able to remove your arm sling splint for good, you’ll likely notice that the muscles surrounding your shoulder and upper chest look smaller and feel weaker. That’s because muscle tissue atrophies without movement. If this occurs, then you’ll need to get a referral for some physical rehabilitation. Rehab can start once you are cleared by your orthopedist, are pain-free, and can perform all the basic arm and shoulder movements. A physiotherapist or athletic trainer can show you specific rehabilitation exercises and stretches to restore your muscle strength, joint movements and flexibility
  • Rigid fixation – osteosynthesis with locking plate, hook plate fixation, fixation with a distal radius locking plate, coracoclavicular screws, Knowles pin fixation.
  • Flexible fixation – simple k wire fixation, tension band wiring, suture anchors, vicryl tape, dacron arterial graft for coracoclavicular ligament reconstruction.

Rest your Hand

Once you’re discharged from the hospital in an arm sling, your top priority is to rest your shoulder and not further inflame the injury. Of course, the arm sling not only provides support, but it also restricts movement, which is why you should keep it on even during sleep. Avoiding the temptation to move your shoulder and arm will help the bone mend quicker and the pain fades away sooner.
  • Depending on what you do for a living and if the injury is to your dominant side, you may need to take a couple of weeks off work to recuperate.
  • Healing takes between four to six weeks in younger people and up to 12 weeks in the elderly, but it depends on the severity of the fractured clavicle.
  • Athletes in good health are typically able to resume their sporting activities within two months of breaking they’re ulnar styloid depending on the severity of the break and the specific sport.
  • Sleeping on your back (with the sling on) is necessary to keep the pressure off your shoulder and prevent stressing the clavicle injury.

Eat nutritiously during your recovery

All bones and tissues in the body need certain nutrients in order to heal properly and in a timely manner. Eating a nutritious and balanced diet that includes lots of minerals and vitamins is proven to help heal broken bones of all types, including ulnar styloid. Therefore, focus on eating lots of fresh produce (fruits and veggies), whole grains, lean meats, and fish to give your body the building blocks needed to properly repair your clavicle. In addition, drink plenty of purified water, milk, and other dairy-based beverages to augment what you eat.

  • Broken bones need ample minerals (calcium, phosphorus, magnesium, boron) and protein to become strong and healthy again.
  • Excellent sources of minerals/protein include dairy products, tofu, beans, broccoli, nuts and seeds, sardines and salmon.
  • Important vitamins that are needed for bone healing include vitamin C (needed to make collagen), vitamin D (crucial for mineral absorption), and vitamin K (binds calcium to bones and triggers collagen formation).
  • Conversely, don’t consume food or drink that is known to impair bone/tissue healing, such as alcoholic beverages, sodas, most fast food items and foods made with lots of refined sugars and preservatives.

Physical therapy

  • Although there will be some pain, it is important to maintain arm motion to prevent stiffness. Often, patients will begin doing exercises for elbow motion immediately after the injury.  After a proximal ulna fracture, it is common to lose some shoulder and arm strength. Once the bone begins to heal, your pain will decrease and your doctor may start gentle shoulder exercises. These exercises will help prevent stiffness and weakness. More strenuous exercises will be started gradually once the fracture is completely healed.

Follow-up care

  • You will need to see your doctor regularly until your fracture heals. During these visits, he or will take x-rays to make sure the bone is healing in a good position. After the bone has healed, you will be able to gradually return to your normal activities.

Breathing Exercise

  • To elevate breathing problem or remove the lung congestion.

Olecranon Fracture

Medications

Medication can be prescribed to ease the pain. 

Surgery

Fracture (left) and repair (right) with three pins, wires, and incision closure with staples

Nondisplaced Fractures

  • In fractures with little or no displacement, immobilization with a posterior splint may be sufficient.[rx] Elbows be immobilized at 45-90º of flexion for 3 weeks, followed by limited (90º) flexion exercises.

Displaced Fractures

  • Most olecranon fractures are displaced and are best treated surgically:

Tension Band Fixation

  • Tension band fixation is the most common form of internal fixation used for non-comminuted olecranon fractures.[rx] It is typically reserved for noncomminuted fractures that are proximal to the coronoid.[rx] This procedure is performed using Kirschner wire (K-wires) which converts tensile forces into compressive force.[rx]

Intramedullary Fixation and Plates

  • Single intramedullary screws can be used to treat simple transverse or oblique fractures.[rx] Plates can be used for all proximal ulna fracture types including Monteggia fractures, and comminuted fractures.[rx]

Excision and triceps advancement

  • This method is indicated for cases when open reduction and internal fixation is unlikely to be successful. For example: extensive comminutions, elderly patients with osteoporotic bone, and small or non-union fractures.[rx][rx]

Open reduction and internal fixation. This is the procedure most often used to treat ulnar styloid fracture fractures. During the procedure, the bone fragments are first repositioned (reduced) into their normal alignment. The pieces of bone are then held in place with special metal hardware.

Common methods of internal fixation include:

  • Plates and screws – After being repositioned into their normal alignment, the bone fragments are held in place with special screws and metal plates attached to the outer surface of the bone. After surgery, you may notice a small patch of numb skin below the incision. This numbness will become less noticeable with time. Because the clavicle lies directly under the skin, you may be able to feel the plate through your skin.
  • Pins or screws –  Pins or screws can also be used to hold the fracture in good position after the bone ends have been put back in place. The incisions for pin or screw placement are usually smaller than those used for plates.
    Pins or screws often irritate the skin where they have been inserted and are usually removed once the fracture has healed.
  • Precontoured locking plates
  • Hook plate
  • Distal radius plates
  • Ulnar styloid fracture screws
  • Flexible coracoclavicular fixation
  • Arthroscopic treatment
  • Intra-medullary fixation
  • Tension band fixation

Closed Reduction and Casting

  • All fractures characterized by minor comminution, without or with minimal displacements can be considered for closed reduction and cast immobilization. Mainly type I and type IIA Melone’s fracture can be managed conservatively. The fracture should be kept under closed observation to look for any re-displacement.
  • Despite the widespread acceptance of immobilization in a plaster cast, questions remain regarding the optimum position, the duration of immobilization and the need to extend the cast proximal to the ulna. No clear consensus exists as to the best position for immobilizing the wrist in plaster. Sarmiento et al.[] advocated immobilization in a position of supination to decrease the deforming force of the brachioradialis, which may cause loss of reduction.

Pins and Plaster Technique

  • Placement of pins in the metacarpals and forearm was initially advocated by Bohler in 1923, but it gained popularity after the report by Green, who showed good or excellent results in 86% of his patients.[]
  • However, he noted a high incidence of minor or major complications, one-third of which were related to pin site only. Other researchers also noted that one-third of the complications were related to pins and 16% of the patients needed reoperation for complications.[]

Percutaneous Pinning

  • Extra-articular fractures of the distal end of the ulna with extensive comminution or the fractures that have no more than two articular fragments, in which anatomical reduction is obtainable, are amenable to percutaneous pinning of the fracture fragments and application of a plaster cast. A single pin placed through the radial styloid as a means of stabilizing the displaced fracture fragment was first suggested by Lambotte in 1908.[,]

External Fixation

  • External fixation is generally accepted as superior to plaster immobilization in the young patients with an intra-articular comminuted fracture of the distal radius. Other indications for external fixation include some unstable extra-articular fractures with significant comminution and failure to maintain reduction after an initial attempt at closed management in a cast, certain situations of multiple trauma, the presence of dysfunctional contralateral limb, severe open fractures with significant soft tissue injury and neurovascular compromise, and bilateral injuries.[]

Limited Open Reduction

  • In intra-articular fractures that have more than 2 mm of displacement, the radio-carpal joint may be incongruent despite adequate attempts at reduction. The incongruency usually involves the lunate part of the distal end of the radius.
  • The ulna styloid process and scaphoid facet are more amenable to reduction through ligamentotaxis or by manipulation and reduction.
  • A new technique of combining external fixation with open reduction of the displaced lunate fossa through a small, longitudinal incision and elevation of the impacted fragment without direct visualization of the surface of the joint has been described.[]

Open Reduction and Internal Fixation

  • One of the recent advances in the treatment of distal ulna fractures is the more frequent application of open reduction and internal fixation, especially for intra-articular fractures. There are two groups of fractures for which open reduction and internal fixation is advisable.

Arthroscopic-Assisted Fracture Reduction

  • Intra-articular fractures of the radius can be arthroscopically assessed, and reduction of the particular components and assessment and repair of ligamentous injury can then be undertaken.[,,] The ideal timing for arthroscopically assisted distal radius surgery is 3 to 7 days after injury.

I. Non-operative methods of treating radial head fractures

A. Immediate mobilization vs. cast in flexion vs. cast in extension

  • One randomized controlled trial (CoE level II) was identified that compared patients treated with immediate mobilization with immobilization.6
  • The least pain and loss of elbow extension were seen in people treated with immobilization, but these differences were not statistically significant.
  • Comparisons between treatments may be limited by small sample sizes and study biases.

B. Aspiration of the elbow versus no aspiration

  • One randomized controlled trial (CoE level II) was identified that compared patients with radial head fractures treated with elbow aspiration versus those who were not treated with aspiration.7
  • Ninety-two percent of the patients who received aspiration reported immediate and lasting relief from pain following the treatment.

II. Non-operative versus operative methods

A. Closed reduction versus ORIF in children

  • One retrospective cohort study on children was identified that compared closed reduction versus open reduction for radial neck fractures.8, 9
  • Compared with children treated with open reduction and internal fixation, those treated with immobilization/closed reduction experienced significantly less pain (15% versus 65%; RR=0.2, 95% CI, 0.1–0.4), avascular necrosis (4% versus 24%; RR = 0.2, 95% CI, 0.05–0.6), and had more good or excellent overall clinical results (99% versus 55%); RR = 1.8, 95% CI, 1.3–2.5).

B. Closed reduction versus ORIF in adults

  • One retrospective cohort study in adults was identified that compared closed versus open reduction for radial head fractures.9
  • Patients who received closed reduction were more likely to report pain than those treated with open reduction, but this was not statistically significant (RR = 2.0, 95% CI, 0.9–4.5).
  • Patients treated with open reduction were more likely to have had a good or excellent clinical result (90%) than patients treated with closed reduction (46%), but, again, these were not statistically significantly different.

III. Operative methods of reducing olecranon fractures

A. Tension band wiring versus plate fixation

  • One randomized controlled trial was identified that compared tension band wiring with plate fixation as treatment of olecranon fractures.10
  • Plate fixation resulted in higher percentage of “good” clinical (no more than occasional pain; loss of movement in elbow less than 15°) and x-ray (no articular step-off or gap; no loss of reduction) results.
  • Many more tension band wiring patients reported complications (74%) compared with patients who received plate fixation (5%), a statistically significant difference (RR= 16.2, 95% CI, 2.3–112). To prevent one complication, one to 2 patients would need to be treated with plate fixation
  • Results may be limited by small sample size.

B. Netz pins versus Kirschner pins

  • One randomized controlled trial was identified that compared Netz pins with Kirschner pins as treatment of olecranon fractures.11
  • Median fracture healing time was similar for both groups (six weeks for Netz pins versus seven weeks for Kirschner pins).
  • More Kirschner (68%) than Netz (52%) pins had to be removed by the end of follow-up, but this difference was not statistically significant.

C. Tension band wiring versus figure of eight wiring

  • One study was found that compared tension band wiring with figure of eight wiring to treat olecranon fractures.2
  • No statistically or clinically significant differences were found between the two treatment groups in terms of pain, loss of strength, range of motion, or osteoarthritis.
  • Patients in the tension band wiring group (81%) experienced significantly more hardware removal than those in the figure of eight wiring group (43%); RR = 1.9, 95% CI, 1.3–1.9)).

IV. Operative versus operative methods for radial head fractures

A. Resection versus open reduction and fixation

  • One retrospective cohort study was identified that compared resection versus open reduction and internal fixation.12
  • Patients who received open reduction and internal fixation reported less pain (P = .02) and greater functional recovery (P = .003) than those who received resection.

B. Primary radial head excision versus delayed excision

  • One retrospective cohort study was identified that compared primary versus delayed excision as treatment of radial head fractures.13
  • No difference was found between immediate (10%) and delayed (11%) treatment in terms of daily pain (RR = 0.9, 95% CI, 0.2–4.6).

C. Biodegradable polylactide pins versus standard metal mini-fragment implants

  • One randomized controlled trial (CoE II) was identified that compared the use of polylactide pins with standard metal mini-fragment implants for treatment of displaced radial head fractures.14
  • No difference in postsurgical complications or in clinician-based outcomes at the two year follow-up was found between the use of biodegradable pins or standard metal lag screws.
  • At two years follow-up, a five times greater risk for osteoloysis was seen in polylactide patients (17%) compared with patients treated using standard metal devices (3%) (RR = 5.4, 95% CI, 1.3–23, NNT = 21). Of patients who developed osteolysis, the osteolysis was mild or moderate in eleven (92%) of those with polylactide pins and one of the two patients with metal devices.

V. Rehabilitation following radial head fractures

  • One study was identified that compared immediate to delayed mobilization for rehabilitation following radial head fractures.
  • No statistically or clinically significant differences were found between pain or range of motion scores at week twelve.
  • In olecranon fractures, osteoarthritis of the elbow joint, occurring after about 5% of these fractures, and the necessity of a second operation to remove hardware, required in 56-85% of olecranon fractures, are two common complications that result from operative treatments.
  • The most common complication of radial head fractures is a loss of joint motion as a result of avascular necrosis, which occurs in 10–20% of radial head fractures.1 No studies comparing prognosis were identified for radial head fractures.
  • Complications of treated Monteggia fractures include recurrent radial head dislocation, malunion, posterior interosseous nerve palsy, and Volkmann’s ischemic contracture. No comparative studies were found on prognosis following Monteggia fractures.

Overall, the quality of evidence on proximal forearm fractures is limited, and definitive statements regarding treatment are not possible. However, the following observations may be helpful:

  • Aspiration of radial head fractures consistently relieved pain.
  • Studies comparing operative to non-operative methods of treating proximal forearm fractures suggest non-operative methods may be better than operative methods in terms of pain, avascular necrosis, and clinical outcomes for radial neck fractures in children. However, in adults, operative methods had better results in terms of pain and clinical results.
  • Tension band wiring, compared with plate fixation, may result in more complications when used as a treatment for olecranon fractures.
  • Tension band wiring of forearm fractures also resulted in greater rates of hardware removal when compared with a figure of eight wiring.
  • Open reduction and internal fixation of radial head fractures seems to have better results than resection
  • Biodegradable pins or standard metal screws for ORIF may result in comparable outcomes but there may be a greater risk of developing a mild degree of osteolysis.

Rehabilitation Guideline for Non-Operative/Conservative rehabilitation [rx]

Acute Stage (0-8 weeks)

Goals

  • Protection with short-arm cast
  • Control pain and edema
  • Maintain range in digits, elbows, shoulder

Interventions

  • AROM and PROM of digits, elbow, shoulder
  • Elevation of hand and digits to control edema
  • Cast removal between 6-8 weeks

Sub Acute Stage

Goal

  • Control pain and edema (TENS, ice)
  • Increase ROM
  • Increase activities of daily living (ADLs)

Interventions

  • AROM and PROM of digits, elbow, shoulder
  • AROM wrist flexion/ extension, forearm supination/ pronation
  • PROM of low load and prolonged stretch

Settled Stage

Goals

  • Regain full ROM
  • Begin strengthening
  • Return to activity

Interventions

  • Continue all ROM exercises
  • Progress to the strengthening of all joints[rx]

Rehabilitation Guideline for External Fixation by Pho et al

Acute Stage (1-6 weeks)

Goals

  • Control pain and edema (TENS, ice)
  • Protect surgical site
  • Maintain ROM of digits, elbow, shoulder

Interventions

  • Elevation
  • AROM of digits, elbow, shoulder
  • AROM forearm supination/ pronation

Sub Acute (7-10 weeks)

Goal

  • Protect fracture site
  • Control pain and edema (TENS, ice)
  • ROM of involved and uninvolved joints

Interventions

  • AROM and PROM of wrist extension/ flexion, radial deviation, and supination/ pronation

Settled Stage (10-16 weeks)

Goal

  • Regain full ROM
  • Begin strengthening
  • Increase tolerance to ADLs

Interventions

  • ROM of wrist flexion/ extension, radial/ ulnar deviation, forearm supination/ pronation progressing to isometric exercises and resisted exercises using dumbbells or resistive bands
  • PROM of low load and prolonged stretching of wrist motions
  • Grip strengthening
  • ADL training within tolerance[rx]

Cryotherapy

  • Cryotherapy is an effective modality for controlling edema in the acute phase after trauma and during rehab due to its ability in helping to decrease blood flow through vasoconstriction limiting the amount of fluid escaping from capillaries to the interstitial fluid[rx]. Cryotherapy can also be combined with compression and elevation in the treatment of edema.[rx]
  • To control pain using cryotherapy, the modality should be applied to the area for 10-15 minutes which can result in pain control up to 2 hours post application.[rx]Precautions for the use of cryotherapy include: over a superficial branch of the nerve, over an open wound, poor sensation or mentation, and very young or very old patients.[rx] Contraindications for cryotherapy include; Acute febrile illness, Vasospasm e.g. Raynaud’s disease, Cryoglobulinemia, Cold urticaria.[rx]

Electrical Stimulation

  • The use of transcutaneous electrical nerve stimulation (TENS) may be used as an adjunct during any phase of rehab to address pain but can be particularly useful for patients that are increasing the level of activity of the wrist. Conventional (high-rate) TENS is useful for disrupting the pain cycle through a prolonged treatment session as great as 24 hours a day.[rx]
  • Low-rate TENS is another form of electrical stimulation that is successful in diminishing pain by targeting motor or nociceptive A-delta nerves. Low-rate TENS has been reported to be effective in pain control for up to 4-5 hours post-treatment.[rx]
  • The literature is still not conclusive on this topic and the results of one study may contradict or, on the contrary, reinforce the results of another study. Yet there is evidence supporting the beneficial effects of electrical stimulation, especially in combination with physiotherapy exercises.

Supervised Active rehabilitation program used in Study

ISOMETRIC EXERCISE

  • Wrist flexors and extensors

ACTIVE RANGE OF MOTION EXERCISE

  • Assisted stretch to forearm flexors and extensor musculature and radial/ulnar deviation
  • Weight-bearing wrist extension exercise(hand on the table with the patient leaning forward on them) to patient tolerance
  • Active stretch to shoulder girdle and rotator cuff musculature
  • Active stretch to elbow flexor and extensor musculature

INTRINSIC HAND MUSCLE EXERCISE

  • Thumb/digit opposition
  • Repetitive squeezing of therapy
  • repetitive towel wringing exercise

STRENGTHENING ROUTINE

  • Biceps curl with 1,5-2 pound weights bilaterally
  • Shoulder abduction, flexion and extension reps with 2-pound weights bilaterally
  • Repetitive squeezing of a rubber ball in affected wrist
  • Flexion and extension of wrist using 1,5-pound weights increasing as tolerated

FUNCTIONAL ACTIVITIES

  • The patient is encouraged to resume pre-accident activities that involve the affected extremity (eg. writing, typing, cooking, etc.)

Complications of Olecranon Fracture

There were no major complications such as neurovascular injury, infection, or impaired wound healing. Surgery-related complication at 2-year follow-up included nonunion in 3 patients (11%),

  • DRUJ subluxation in 3 patients (11%),
  • Implant migration in 4 patients (14%),
  • Radiographic resorption of the ulnar styloid in 4 patients (14%).
  • Radiographic nonunion was noted in 1 patient in group A (8%) and 2 in group B (13%). Residual DRUJ subluxation was noted in 3 patients; all were in group B (20%).
  • Partial or complete radiographic resorption of the ulna was found in 1 patient in group A (8%) and 3 in group B (20%).
  • Implant migration was noted in 1 patient in group A (8%), and 2 in group B (13%).
  • Subsequent removal surgery due to implant irritation occurred in 13 patients (46%), with 4 in group A (31%) and 8 in group B (53%).
  • A total of 11 patients (39%) with surgery-related complications included 5 (38%) in group A and 12 (80%) in group B, with a significant difference

There are risks associated with any type of surgery. These include

  • Nonunion (1-5%)
  • Infection (~4.8%)
  • 4% in the surgical group develop adhesive capsulitis requiring surgical intervention
  • Bleeding
  • Problems with wound healing
  • Blood clots
  • Damage to blood vessels or nerves
  • Reaction to anesthesia
  • Hardware prominence
  • Malunion with cosmetic deformity
  • Restriction of ROM
  • The difficulty with bone healing
  • Hardware irritation
  • Fracture comminution (Z deformity)
  • Fracture displacement
  • Increased fatigue with overhead activities
  • Dissatisfaction with appearance
  • The difficulty with shoulder straps, backpacks and the like
  • ~30% of patient request plate removal
  • Superior plates associated with increased irritation
  • Superior plates associated with increased risk of subclavian artery or vein penetration

References

Olecranon Fracture

By

Ulna Neck Fracture; Causes, Diagnosis, Treatment

Ulna Neck Fracture/Proximal ulna fractures account for 20% of all proximal forearm fractures.[ There are many options available for the treatment of such fractures, such as cast immobilization, plate, and screw fixation, tension band wiring and intramedullary screw fixation, depending on the fracture pattern.[ Undisplaced proximal ulna fracture with intact extensor mechanism can be treated with cast immobilization, while simple transverse fractures are best treated via tension band wiring and intramedullary screw fixation. The use of plate and screw fixation is more appropriate in comminuted fractures of the proximal ulna. Due to the subcutaneous nature of the proximal forearm, it is vulnerable to open injuries over the dorsal aspect of the proximal ulna.

Bones Of Upper Limb Anatomy and Arm Muscle And Bone Muscles Of The Pectoral Girdle And Upper Limbs – Human Diagram Chart

 

Classifications of Ulna Neck Fracture

There are several classifications that describe different forms of olecranon fractures, yet none of them have gained widespread acceptance:[rx]

Mayo Classification

Based on the stability, the displacement and the comminution of the fracture. It is composed of three types, and each type is divided into two subtypes: subtype A (non-comminuted) and subtype B (comminuted).

  • Type I: Non-displaced fracture – It can be either non-comminuted ones (Type IA) or comminuted (Type IB).
  • Type II: Displaced, stable fractures – In this pattern, the proximal fracture fragment is displaced more than 3 mm, but the collateral ligaments are intact. That is why there is no elbow instability. It can be either non-comminuted ones (Type IIA) or comminuted (Type IIB).
  • Type III: Displaced unstable fracture – In this case, the fracture fragments are displaced and the forearm is unstable in relation to the humerus. It is a fracture -dislocation. It also may be either non-comminuted (Type IIIA) or comminuted (Type IIIB).

AO Classification

This classification incorporates all fractures of the proximal ulna and radius into one group, subdivided into three patterns:

  • Type A: Extra-articular fractures of the metadiaphysis of either the radius or the ulna
  • Type B: Intra-articular fractures of either the radius or ulna
  • Type C: Complex fractures of both the proximal radius and ulna

Colton Classification

  • Type I – Nondisplaced – Displacement does not increase with elbow flexion
  • Type II – Avulsion (displaced)
  • Type III – Oblique and Transverse (displaced)
  • Type IV – Comminuted (displaced)
  • Type V – Fracture dislocation

Schatzker Classification

  • Type A – Simple transverse fracture
  • Type B – Transverse impacted fracture
  • Type C – Oblique fracture
  • Type D – Comminuted fracture
  • Type E – More distal fracture, extra-articular
  • Type F – Fracture-dislocation

Mechanism of Ulna Neck Fracture

Olecranon fractures are common. Typically they are caused by direct blows to the elbow (e.g. motor vehicle accidents), and due to falls when the triceps are contracted.[rx][rx] “Side-swipe” injury when driving a motor vehicle with an elbow projecting outside the vehicle resting on an open window’s edge is an example.[rx]

Direct trauma – This can happen in a fall with landing on the elbow or by being hit by a solid object. Trauma to the elbow often results in comminuted fractures of the olecranon.

Indirect trauma – by falling and landing with an outstretched arm.

Powerful pull of the triceps muscle can also cause avulsion fractures.

Causes of Ulna Neck Fracture

 

  • Sudden forceful  fall down
  • Road traffic accident
  • Falls – Falling onto an outstretched hand is one of the most common causes of broken proximal ulna fractures.
  • Sports injuries – Many wrist fractures occur during contact sports or sports in which you might fall onto an outstretched hand — such as in-line skating or snowboarding.
  • Motor vehicle crashes – Motor vehicle crashes can cause wrist bones to break, sometimes into many pieces, and often require surgical repair.
  • Have osteoporosis – a disease that weakens your bones
  • Eave low muscle mass or poor muscle strength – or lack agility and have poor balance (these conditions make you more likely to fall)
  • Walk or do other activities in snow or on the ice –  or do activities that require a lot of forwarding momenta, such as in-line skating and skiing
  • Wave an inadequate intake of calcium or vitamin D
  • Football or soccer, especially on artificial turf
  • Rugby
  • Horseback riding
  • Hockey
  • Skiing
  • Snowboarding
  • In-line skating
  • Jumping on a trampoline

Symptoms of Ulna Neck Fracture

People with olecranon fractures present with intense elbow pain after a direct blow or fall.[rx] Swelling over the bone site is seen and an inability to straighten the elbow is common. Due to the proximity of the olecranon to the ulnar nerve, the injury and swelling may cause numbness and tingle at the fourth and fifth fingers.[rx] The examination can bring out a palpable defect at the site of the fracture.[rx]

  • Severe pain that might worsen when gripping or squeezing or moving your hand or wrist
  • Swelling
  • Tenderness
  • Bruising
  • Obvious deformity, such as a bent wrist
  • Pain
  • Bruising
  • Tenderness
  • The wrist hanging in a deformed way
  • Pain, especially when flexing the ulnar styloid fracture

Diagnosis of Ulna Neck Fracture

Diagnosis can be made upon the interpretation of anteroposterior and lateral views alone.[rx]

The classic proximal ulna fractures have the following characteristics:[rx]

  • Transverse fracture of the ulnar
  • dorsal displacement and dorsal angulation, together with radial tilt[rx]

Other characteristics[rx][rx]

  • Radial-ulnar styloid fracture shortening
  • Loss of ulnar inclination≤
  • Radial angulation of the wrist
  • Comminution at the fracture site
  • Associated fracture of the ulnar styloid process in more than 60% of cases.

Differential Diagnosis/ Associated Injuries

  • Scapholunate ligament tear
  • Median nerve injury
  • TFCC (triangular fibrocartilage complex) injury, up to 50% when ulnar styloid fx also present
  • Carpal ligament injury – Scapholunate Instability(most common), lunotriquetral ligament
  • Tendon injury, attritional EPL rupture, usually treated with EIP tendon transfer
  • Compartment syndrome
  • Ulnar styloid fracture
  • DRUJ (Distal Radial Ulnar Joint) Instability
  • Galeazzi Fracture: highly associated with distal 1/3 radial shaft fractures[rx]

Plain radiographs

  • Radiographic imaging is important in diagnosis, classification, treatment and follow-up assessment of these fractures. The routine minimal evaluation for proximal ulna fractures must include two views-a postero-anterior (PA) view and lateral view.[]
  • The PA view should be obtained with the humerus abducted 90 degrees from the chest wall, so that the elbow is at the same level as the shoulder and flexed 90 degrees.[] The palm is maintained flat against the cassette

Computed Tomography

  • CT may be useful and can give significant information in comparison with that obtained with conventional radiography in the evaluation of complex or occult fractures, distal radial articular surface, distal radio-ulnar joint, ventromedial fracture fragment,[] assessments of fracture healing as well as post-surgical evaluation.[]
  • CT may be indicated for the confirmation of occult fractures suspected on the basis of physical examination when plain films are normal.

Magnetic Resonance Imaging

  • Although this modality is not the first choice in evaluating acute distal radius fractures, it is a powerful diagnostic tool to assess bony, ligamentous and soft tissue abnormalities associated with these fractures.
  • MRI has proved to be a very important diagnostic tool for delineating perforation of triangular fibrocartilage complex (TFCC),[] perforation of interosseous ligaments of the proximal carpal row, evaluating occult fractures, post-traumatic or avascular necrosis of carpal bones.

Treatment of Ulna Neck Fracture

Ulna Neck Fracture

Treatment available can be broadly

  • Get medical help immediately – If you fall on an outstretched arm, get into a car accident or are hit while playing a sport and feel intense pain in your shoulder area, then get medical care immediately. Proximal ulna fractures cause significant pain in the front part of your shoulder, closer to the base of your neck. You’ll innately know that something is seriously wrong because you won’t be able to lift your arm up. Other symptoms include immediate swelling and/or bruising near the fracture, grinding sounds with arm movements and potential numbness and tingling in the arm/hand.
  • Apply ice to your fractured clavicle – After you get home from the hospital proximal ulna fractures (regardless if you had surgery or not), you should apply a bag of crushed ice (or something cold) to your injured in order to reduce the swelling and numb the pain. Ice therapy is effective for acute (recent) injuries that involve swelling because it reduces blood flow by constricting local blood vessels. Apply the crushed ice to your clavicle for 15 minutes three to five times daily until the soreness and inflammation eventually fades away
    Lightly exercise after the pain fades – After a couple of weeks when the swelling has subsided and the pain has faded away, remove your arm sling for short periods and carefully move your arm and shoulder in all different directions. Don’t aggravate the proximal ulna fractures so that it hurts, but gently reintroduce movements to the involved joints and muscles. Start cautiously, maybe starting with light calisthenics and then progress to holding light weights (five-pound weights to start). Your proximal ulna fractures need to move a little bit during the later phases of the injury to stimulate complete recovery.
  • Practice stretching and strengthening exercises – of the fingers, elbow, and shoulder if your doctor recommends them.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for six to eight weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)
  • Get a supportive arm sling – Due to their anatomical position, proximal ulna fractures can’t be cast like a broken limb can. Instead, a supportive arm sling or “figure-eight” splint is typically used for support and comfort, either immediately after the injury if it’s just a hairline fracture or following surgery, if it’s a complicated fracture. A figure-eight splint wraps around both shoulders and the base of your neck in order to support the injured shoulder and keep it positioned up and back. Sometimes a larger swath of material is wrapped around the sling to keep it closer to your body. You’ll need to wear the sling constantly until there is no pain with arm movements, which takes between two to four weeks for children or four to eight weeks for adults.
  • Get a referral to physical therapy – Once you’ve recovered and able to remove your arm sling splint for good, you’ll likely notice that the muscles surrounding your shoulder and upper chest look smaller and feel weaker. That’s because muscle tissue atrophies without movement. If this occurs, then you’ll need to get a referral for some physical rehabilitation. Rehab can start once you are cleared by your orthopedist, are pain-free, and can perform all the basic arm and shoulder movements. A physiotherapist or athletic trainer can show you specific rehabilitation exercises and stretches to restore your muscle strength, joint movements and flexibility
  • Rigid fixation – osteosynthesis with locking plate, hook plate fixation, fixation with a distal radius locking plate, coracoclavicular screws, Knowles pin fixation.
  • Flexible fixation – simple k wire fixation, tension band wiring, suture anchors, vicryl tape, dacron arterial graft for coracoclavicular ligament reconstruction.

Rest your Hand

Once you’re discharged from the hospital in an arm sling, your top priority is to rest your shoulder and not further inflame the injury. Of course, the arm sling not only provides support, but it also restricts movement, which is why you should keep it on even during sleep. Avoiding the temptation to move your shoulder and arm will help the bone mend quicker and the pain fades away sooner.
  • Depending on what you do for a living and if the injury is to your dominant side, you may need to take a couple of weeks off work to recuperate.
  • Healing takes between four to six weeks in younger people and up to 12 weeks in the elderly, but it depends on the severity of the fractured clavicle.
  • Athletes in good health are typically able to resume their sporting activities within two months of breaking they’re ulnar styloid depending on the severity of the break and the specific sport.
  • Sleeping on your back (with the sling on) is necessary to keep the pressure off your shoulder and prevent stressing the clavicle injury.

Eat nutritiously during your recovery

All bones and tissues in the body need certain nutrients in order to heal properly and in a timely manner. Eating a nutritious and balanced diet that includes lots of minerals and vitamins is proven to help heal broken bones of all types, including ulnar styloid. Therefore, focus on eating lots of fresh produce (fruits and veggies), whole grains, lean meats, and fish to give your body the building blocks needed to properly repair your clavicle. In addition, drink plenty of purified water, milk, and other dairy-based beverages to augment what you eat.

  • Broken bones need ample minerals (calcium, phosphorus, magnesium, boron) and protein to become strong and healthy again.
  • Excellent sources of minerals/protein include dairy products, tofu, beans, broccoli, nuts and seeds, sardines and salmon.
  • Important vitamins that are needed for bone healing include vitamin C (needed to make collagen), vitamin D (crucial for mineral absorption), and vitamin K (binds calcium to bones and triggers collagen formation).
  • Conversely, don’t consume food or drink that is known to impair bone/tissue healing, such as alcoholic beverages, sodas, most fast food items and foods made with lots of refined sugars and preservatives.

Physical therapy

  • Although there will be some pain, it is important to maintain arm motion to prevent stiffness. Often, patients will begin doing exercises for elbow motion immediately after the injury.  After a proximal ulna fracture, it is common to lose some shoulder and arm strength. Once the bone begins to heal, your pain will decrease and your doctor may start gentle shoulder exercises. These exercises will help prevent stiffness and weakness. More strenuous exercises will be started gradually once the fracture is completely healed.

Follow-up care

  • You will need to see your doctor regularly until your fracture heals. During these visits, he or will take x-rays to make sure the bone is healing in a good position. After the bone has healed, you will be able to gradually return to your normal activities.

Breathing Exercise

  • To elevate breathing problem or remove the lung congestion.

Ulna Neck Fracture

Medications

Medication can be prescribed to ease the pain. 

Surgery

Fracture (left) and repair (right) with three pins, wires, and incision closure with staples

Nondisplaced Fractures

  • In fractures with little or no displacement, immobilization with a posterior splint may be sufficient.[rx] Elbows be immobilized at 45-90º of flexion for 3 weeks, followed by limited (90º) flexion exercises.

Displaced Fractures

  • Most olecranon fractures are displaced and are best treated surgically:

Tension Band Fixation

  • Tension band fixation is the most common form of internal fixation used for non-comminuted olecranon fractures.[rx] It is typically reserved for noncomminuted fractures that are proximal to the coronoid.[rx] This procedure is performed using Kirschner wire (K-wires) which converts tensile forces into compressive force.[rx]

Intramedullary Fixation and Plates

  • Single intramedullary screws can be used to treat simple transverse or oblique fractures.[rx] Plates can be used for all proximal ulna fracture types including Monteggia fractures, and comminuted fractures.[rx]

Excision and triceps advancement

  • This method is indicated for cases when open reduction and internal fixation is unlikely to be successful. For example: extensive comminutions, elderly patients with osteoporotic bone, and small or non-union fractures.[rx][rx]

Open reduction and internal fixation. This is the procedure most often used to treat ulnar styloid fracture fractures. During the procedure, the bone fragments are first repositioned (reduced) into their normal alignment. The pieces of bone are then held in place with special metal hardware.

Common methods of internal fixation include:

  • Plates and screws – After being repositioned into their normal alignment, the bone fragments are held in place with special screws and metal plates attached to the outer surface of the bone. After surgery, you may notice a small patch of numb skin below the incision. This numbness will become less noticeable with time. Because the clavicle lies directly under the skin, you may be able to feel the plate through your skin.
  • Pins or screws –  Pins or screws can also be used to hold the fracture in good position after the bone ends have been put back in place. The incisions for pin or screw placement are usually smaller than those used for plates.
    Pins or screws often irritate the skin where they have been inserted and are usually removed once the fracture has healed.
  • Precontoured locking plates
  • Hook plate
  • Distal radius plates
  • Ulnar styloid fracture screws
  • Flexible coracoclavicular fixation
  • Arthroscopic treatment
  • Intra-medullary fixation
  • Tension band fixation

Closed Reduction and Casting

  • All fractures characterized by minor comminution, without or with minimal displacements can be considered for closed reduction and cast immobilization. Mainly type I and type IIA Melone’s fracture can be managed conservatively. The fracture should be kept under closed observation to look for any re-displacement.
  • Despite the widespread acceptance of immobilization in a plaster cast, questions remain regarding the optimum position, the duration of immobilization and the need to extend the cast proximal to the ulna. No clear consensus exists as to the best position for immobilizing the wrist in plaster. Sarmiento et al.[] advocated immobilization in a position of supination to decrease the deforming force of the brachioradialis, which may cause loss of reduction.

Pins and Plaster Technique

  • Placement of pins in the metacarpals and forearm was initially advocated by Bohler in 1923, but it gained popularity after the report by Green, who showed good or excellent results in 86% of his patients.[]
  • However, he noted a high incidence of minor or major complications, one-third of which were related to pin site only. Other researchers also noted that one-third of the complications were related to pins and 16% of the patients needed reoperation for complications.[]

Percutaneous Pinning

  • Extra-articular fractures of the distal end of the ulna with extensive comminution or the fractures that have no more than two articular fragments, in which anatomical reduction is obtainable, are amenable to percutaneous pinning of the fracture fragments and application of a plaster cast. A single pin placed through the radial styloid as a means of stabilizing the displaced fracture fragment was first suggested by Lambotte in 1908.[,]

External Fixation

  • External fixation is generally accepted as superior to plaster immobilization in the young patients with an intra-articular comminuted fracture of the distal radius. Other indications for external fixation include some unstable extra-articular fractures with significant comminution and failure to maintain reduction after an initial attempt at closed management in a cast, certain situations of multiple trauma, the presence of dysfunctional contralateral limb, severe open fractures with significant soft tissue injury and neurovascular compromise, and bilateral injuries.[]

Limited Open Reduction

  • In intra-articular fractures that have more than 2 mm of displacement, the radio-carpal joint may be incongruent despite adequate attempts at reduction. The incongruency usually involves the lunate part of the distal end of the radius.
  • The ulna styloid process and scaphoid facet are more amenable to reduction through ligamentotaxis or by manipulation and reduction.
  • A new technique of combining external fixation with open reduction of the displaced lunate fossa through a small, longitudinal incision and elevation of the impacted fragment without direct visualization of the surface of the joint has been described.[]

Open Reduction and Internal Fixation

  • One of the recent advances in the treatment of distal ulna fractures is the more frequent application of open reduction and internal fixation, especially for intra-articular fractures. There are two groups of fractures for which open reduction and internal fixation is advisable.

Arthroscopic-Assisted Fracture Reduction

  • Intra-articular fractures of the radius can be arthroscopically assessed, and reduction of the particular components and assessment and repair of ligamentous injury can then be undertaken.[,,] The ideal timing for arthroscopically assisted distal radius surgery is 3 to 7 days after injury.

I. Non-operative methods of treating radial head fractures

A. Immediate mobilization vs. cast in flexion vs. cast in extension

  • One randomized controlled trial (CoE level II) was identified that compared patients treated with immediate mobilization with immobilization.6
  • The least pain and loss of elbow extension were seen in people treated with immobilization, but these differences were not statistically significant.
  • Comparisons between treatments may be limited by small sample sizes and study biases.

B. Aspiration of the elbow versus no aspiration

  • One randomized controlled trial (CoE level II) was identified that compared patients with radial head fractures treated with elbow aspiration versus those who were not treated with aspiration.7
  • Ninety-two percent of the patients who received aspiration reported immediate and lasting relief from pain following the treatment.

II. Non-operative versus operative methods

A. Closed reduction versus ORIF in children

  • One retrospective cohort study on children was identified that compared closed reduction versus open reduction for radial neck fractures.8, 9
  • Compared with children treated with open reduction and internal fixation, those treated with immobilization/closed reduction experienced significantly less pain (15% versus 65%; RR=0.2, 95% CI, 0.1–0.4), avascular necrosis (4% versus 24%; RR = 0.2, 95% CI, 0.05–0.6), and had more good or excellent overall clinical results (99% versus 55%); RR = 1.8, 95% CI, 1.3–2.5).

B. Closed reduction versus ORIF in adults

  • One retrospective cohort study in adults was identified that compared closed versus open reduction for radial head fractures.9
  • Patients who received closed reduction were more likely to report pain than those treated with open reduction, but this was not statistically significant (RR = 2.0, 95% CI, 0.9–4.5).
  • Patients treated with open reduction were more likely to have had a good or excellent clinical result (90%) than patients treated with closed reduction (46%), but, again, these were not statistically significantly different.

III. Operative methods of reducing olecranon fractures

A. Tension band wiring versus plate fixation

  • One randomized controlled trial was identified that compared tension band wiring with plate fixation as treatment of olecranon fractures.10
  • Plate fixation resulted in higher percentage of “good” clinical (no more than occasional pain; loss of movement in elbow less than 15°) and x-ray (no articular step-off or gap; no loss of reduction) results.
  • Many more tension band wiring patients reported complications (74%) compared with patients who received plate fixation (5%), a statistically significant difference (RR= 16.2, 95% CI, 2.3–112). To prevent one complication, one to 2 patients would need to be treated with plate fixation
  • Results may be limited by small sample size.

B. Netz pins versus Kirschner pins

  • One randomized controlled trial was identified that compared Netz pins with Kirschner pins as treatment of olecranon fractures.11
  • Median fracture healing time was similar for both groups (six weeks for Netz pins versus seven weeks for Kirschner pins).
  • More Kirschner (68%) than Netz (52%) pins had to be removed by the end of follow-up, but this difference was not statistically significant.

C. Tension band wiring versus figure of eight wiring

  • One study was found that compared tension band wiring with figure of eight wiring to treat olecranon fractures.2
  • No statistically or clinically significant differences were found between the two treatment groups in terms of pain, loss of strength, range of motion, or osteoarthritis.
  • Patients in the tension band wiring group (81%) experienced significantly more hardware removal than those in the figure of eight wiring group (43%); RR = 1.9, 95% CI, 1.3–1.9)).

IV. Operative versus operative methods for radial head fractures

A. Resection versus open reduction and fixation

  • One retrospective cohort study was identified that compared resection versus open reduction and internal fixation.12
  • Patients who received open reduction and internal fixation reported less pain (P = .02) and greater functional recovery (P = .003) than those who received resection.

B. Primary radial head excision versus delayed excision

  • One retrospective cohort study was identified that compared primary versus delayed excision as treatment of radial head fractures.13
  • No difference was found between immediate (10%) and delayed (11%) treatment in terms of daily pain (RR = 0.9, 95% CI, 0.2–4.6).

C. Biodegradable polylactide pins versus standard metal mini-fragment implants

  • One randomized controlled trial (CoE II) was identified that compared the use of polylactide pins with standard metal mini-fragment implants for treatment of displaced radial head fractures.14
  • No difference in postsurgical complications or in clinician-based outcomes at the two year follow-up was found between the use of biodegradable pins or standard metal lag screws.
  • At two years follow-up, a five times greater risk for osteoloysis was seen in polylactide patients (17%) compared with patients treated using standard metal devices (3%) (RR = 5.4, 95% CI, 1.3–23, NNT = 21). Of patients who developed osteolysis, the osteolysis was mild or moderate in eleven (92%) of those with polylactide pins and one of the two patients with metal devices.

V. Rehabilitation following radial head fractures

  • One study was identified that compared immediate to delayed mobilization for rehabilitation following radial head fractures.
  • No statistically or clinically significant differences were found between pain or range of motion scores at week twelve.
  • In olecranon fractures, osteoarthritis of the elbow joint, occurring after about 5% of these fractures, and the necessity of a second operation to remove hardware, required in 56-85% of olecranon fractures, are two common complications that result from operative treatments.
  • The most common complication of radial head fractures is a loss of joint motion as a result of avascular necrosis, which occurs in 10–20% of radial head fractures.1 No studies comparing prognosis were identified for radial head fractures.
  • Complications of treated Monteggia fractures include recurrent radial head dislocation, malunion, posterior interosseous nerve palsy, and Volkmann’s ischemic contracture. No comparative studies were found on prognosis following Monteggia fractures.

Overall, the quality of evidence on proximal forearm fractures is limited, and definitive statements regarding treatment are not possible. However, the following observations may be helpful:

  • Aspiration of radial head fractures consistently relieved pain.
  • Studies comparing operative to non-operative methods of treating proximal forearm fractures suggest non-operative methods may be better than operative methods in terms of pain, avascular necrosis, and clinical outcomes for radial neck fractures in children. However, in adults, operative methods had better results in terms of pain and clinical results.
  • Tension band wiring, compared with plate fixation, may result in more complications when used as a treatment for olecranon fractures.
  • Tension band wiring of forearm fractures also resulted in greater rates of hardware removal when compared with a figure of eight wiring.
  • Open reduction and internal fixation of radial head fractures seems to have better results than resection
  • Biodegradable pins or standard metal screws for ORIF may result in comparable outcomes but there may be a greater risk of developing a mild degree of osteolysis.

Rehabilitation Guideline for Non-Operative/Conservative rehabilitation [rx]

Acute Stage (0-8 weeks)

Goals

  • Protection with short-arm cast
  • Control pain and edema
  • Maintain range in digits, elbows, shoulder

Interventions

  • AROM and PROM of digits, elbow, shoulder
  • Elevation of hand and digits to control edema
  • Cast removal between 6-8 weeks

Sub Acute Stage

Goal

  • Control pain and edema (TENS, ice)
  • Increase ROM
  • Increase activities of daily living (ADLs)

Interventions

  • AROM and PROM of digits, elbow, shoulder
  • AROM wrist flexion/ extension, forearm supination/ pronation
  • PROM of low load and prolonged stretch

Settled Stage

Goals

  • Regain full ROM
  • Begin strengthening
  • Return to activity

Interventions

  • Continue all ROM exercises
  • Progress to the strengthening of all joints[rx]

Rehabilitation Guideline for External Fixation by Pho et al

Acute Stage (1-6 weeks)

Goals

  • Control pain and edema (TENS, ice)
  • Protect surgical site
  • Maintain ROM of digits, elbow, shoulder

Interventions

  • Elevation
  • AROM of digits, elbow, shoulder
  • AROM forearm supination/ pronation

Sub Acute (7-10 weeks)

Goal

  • Protect fracture site
  • Control pain and edema (TENS, ice)
  • ROM of involved and uninvolved joints

Interventions

  • AROM and PROM of wrist extension/ flexion, radial deviation, and supination/ pronation

Settled Stage (10-16 weeks)

Goal

  • Regain full ROM
  • Begin strengthening
  • Increase tolerance to ADLs

Interventions

  • ROM of wrist flexion/ extension, radial/ ulnar deviation, forearm supination/ pronation progressing to isometric exercises and resisted exercises using dumbbells or resistive bands
  • PROM of low load and prolonged stretching of wrist motions
  • Grip strengthening
  • ADL training within tolerance[rx]

Cryotherapy

  • Cryotherapy is an effective modality for controlling edema in the acute phase after trauma and during rehab due to its ability in helping to decrease blood flow through vasoconstriction limiting the amount of fluid escaping from capillaries to the interstitial fluid[rx]. Cryotherapy can also be combined with compression and elevation in the treatment of edema.[rx]
  • To control pain using cryotherapy, the modality should be applied to the area for 10-15 minutes which can result in pain control up to 2 hours post application.[rx]Precautions for the use of cryotherapy include: over a superficial branch of the nerve, over an open wound, poor sensation or mentation, and very young or very old patients.[rx] Contraindications for cryotherapy include; Acute febrile illness, Vasospasm e.g. Raynaud’s disease, Cryoglobulinemia, Cold urticaria.[rx]

Electrical Stimulation

  • The use of transcutaneous electrical nerve stimulation (TENS) may be used as an adjunct during any phase of rehab to address pain but can be particularly useful for patients that are increasing the level of activity of the wrist. Conventional (high-rate) TENS is useful for disrupting the pain cycle through a prolonged treatment session as great as 24 hours a day.[rx]
  • Low-rate TENS is another form of electrical stimulation that is successful in diminishing pain by targeting motor or nociceptive A-delta nerves. Low-rate TENS has been reported to be effective in pain control for up to 4-5 hours post-treatment.[rx]
  • The literature is still not conclusive on this topic and the results of one study may contradict or, on the contrary, reinforce the results of another study. Yet there is evidence supporting the beneficial effects of electrical stimulation, especially in combination with physiotherapy exercises.

Supervised Active rehabilitation program used in Study

ISOMETRIC EXERCISE

  • Wrist flexors and extensors

ACTIVE RANGE OF MOTION EXERCISE

  • Assisted stretch to forearm flexors and extensor musculature and radial/ulnar deviation
  • Weight-bearing wrist extension exercise(hand on the table with the patient leaning forward on them) to patient tolerance
  • Active stretch to shoulder girdle and rotator cuff musculature
  • Active stretch to elbow flexor and extensor musculature

INTRINSIC HAND MUSCLE EXERCISE

  • Thumb/digit opposition
  • Repetitive squeezing of therapy
  • repetitive towel wringing exercise

STRENGTHENING ROUTINE

  • Biceps curl with 1,5-2 pound weights bilaterally
  • Shoulder abduction, flexion and extension reps with 2-pound weights bilaterally
  • Repetitive squeezing of a rubber ball in affected wrist
  • Flexion and extension of wrist using 1,5-pound weights increasing as tolerated

FUNCTIONAL ACTIVITIES

  • The patient is encouraged to resume pre-accident activities that involve the affected extremity (eg. writing, typing, cooking, etc.)

Complications of Ulna Neck Fracture

There were no major complications such as neurovascular injury, infection, or impaired wound healing. Surgery-related complication at 2-year follow-up included nonunion in 3 patients (11%),

  • DRUJ subluxation in 3 patients (11%),
  • Implant migration in 4 patients (14%),
  • Radiographic resorption of the ulnar styloid in 4 patients (14%).
  • Radiographic nonunion was noted in 1 patient in group A (8%) and 2 in group B (13%). Residual DRUJ subluxation was noted in 3 patients; all were in group B (20%).
  • Partial or complete radiographic resorption of the ulna was found in 1 patient in group A (8%) and 3 in group B (20%).
  • Implant migration was noted in 1 patient in group A (8%), and 2 in group B (13%).
  • Subsequent removal surgery due to implant irritation occurred in 13 patients (46%), with 4 in group A (31%) and 8 in group B (53%).
  • A total of 11 patients (39%) with surgery-related complications included 5 (38%) in group A and 12 (80%) in group B, with a significant difference

There are risks associated with any type of surgery. These include

  • Nonunion (1-5%)
  • Infection (~4.8%)
  • 4% in the surgical group develop adhesive capsulitis requiring surgical intervention
  • Bleeding
  • Problems with wound healing
  • Blood clots
  • Damage to blood vessels or nerves
  • Reaction to anesthesia
  • Hardware prominence
  • Malunion with cosmetic deformity
  • Restriction of ROM
  • The difficulty with bone healing
  • Hardware irritation
  • Fracture comminution (Z deformity)
  • Fracture displacement
  • Increased fatigue with overhead activities
  • Dissatisfaction with appearance
  • The difficulty with shoulder straps, backpacks and the like
  • ~30% of patient request plate removal
  • Superior plates associated with increased irritation
  • Superior plates associated with increased risk of subclavian artery or vein penetration

References

Ulna Neck Fracture

Translate »