Choline, Uses, Dosage, Side Effects, Interactions

Choline, Uses, Dosage, Side Effects, Interactions

Choline is a basic constituent of lecithin that is found in many plants and animal organs? It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism. Choline is now considered to be an essential vitamin. While humans can synthesize small amounts (by converting phosphatidylethanolamine to phosphatidylcholine), it must be consumed in the diet to maintain health. Required levels are between 425 mg/day (female) and 550 mg/day (male). Milk, eggs, liver, and peanuts are especially rich in choline. Most choline is found in phospholipids, namely phosphatidylcholine or lecithin. Choline can be oxidized to form betaine, which is a methyl source for many reactions (i. e. conversion of homocysteine into methionine). Lack of sufficient amounts of choline in the diet can lead to a fatty liver condition and general liver damage. This arises from the lack of VLDL, which is necessary to transport fats away from the liver. Choline deficiency also leads to elevated serum levels of alanine aminotransferase and is associated with an increased incidence of liver cancer.

Mechanism of Action of Choline

Choline is a major part of the polar head group of phosphatidylcholine. Phosphatidylcholine’s role in the maintenance of cell membrane integrity is vital to all of the basic biological processes: information flow, intracellular communication and bioenergetics. Inadequate choline intake would negatively affect all these processes. Choline is also a major part of another membrane phospholipid, sphingomyelin, also important for the maintenance of cell structure and function. It is noteworthy and not surprising that choline deficiency in cell culture causes apoptosis or programmed cell death. This appears to be due to abnormalities in cell membrane phosphatidylcholine content and an increase in ceramide, a precursor, as well as a metabolite, of sphingomyelin. Ceramide accumulation, which is caused by choline deficiency, appears to activate Caspase, a type of enzyme that mediates apoptosis. Betaine or trimethylglycine is derived from choline via an oxidation reaction. Betaine is one of the factors that maintains low levels of homocysteine by resynthesizing L-methionine from homocysteine. Elevated homocysteine levels are a significant risk factor for atherosclerosis, as well as other cardiovascular and neurological disorders. Acetylcholine is one of the major neurotransmitters and requires choline for its synthesis. Adequate acetylcholine levels in the brain are believed to be protective against certain types of dementia, including Alzheimer’s disease.

You Might Also Like   Omeprazole; Uses, Dosage, Side Effects, Interactions, Pregnancy

Indications of Choline


References

Choline


Loading

If the article is helpful, please Click to Star Icon and Rate This Post!
[Total: 0 Average: 0]

About the author

Rx Harun administrator

Translate »